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Abstract: Simulating the dynamics of fluid flows accurately and efficiently remains a challenging task 

nowadays, and traditional fluid simulation methods consume large computational resources to obtain 

accurate results. Deep learning methods have developed rapidly, which makes data-based fluid simulation 

and generation possible. In this paper, a motion prediction algorithm for long-term fluid simulation is 

proposed, which is based on a density field with a single frame and a previous velocity field of a 

sequence. The model focuses on matching the velocity and density fields predicted by the neural network 

with the simulated data based on the Navier-Stokes equation at a macroscopic level. With the help of 

fully convolutional U-Net-based autoencoders and LSTM-based time series prediction subnetworks, the 

model better maintains the visual macroscopic similarity during temporal evolutions and significantly 

improves computation speed. As a result, the proposed method achieves accurate and rapid long-term 

motion prediction for the macroscopic distributions of flow field evolution. In addition, the paper 

demonstrates the effectiveness and efficiency of the proposed algorithm on a series of benchmark tests 

based on two-dimensional (2D) and three-dimension (3D) simulation data.
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摘要摘要：：快速准确的进行流体仿真是一个具有挑战性的任务，基于传统方法的流体仿真需要消耗大

量的计算资源以获得准确的结果。深度学习方法快速发展，为基于数据的流体仿真和生成提供了

可能。提出一种基于单帧的浓度场和一个序列的先验速度场的长时序流体仿真运动预测算法。这

一模型专注于将通过神经网络预测的速度和密度场基于纳维-斯托克斯方程获得的仿真数据在宏观

尺度上进行匹配。通过使用基于全卷积U型网络的自动编码器和基于LSTM网络的时序预测子网

络，本文模型在时间演化过程中更好地保持了视觉宏观相似性，并实现了显著的计算速度提升。

本文方法实现了对流体场演化的宏观分布的准确和快速的长时序运动预测。在一系列二维和三维

的仿真数据的基准测试上证明了本文算法的有效性和高效性。
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0　　Introduction

Fluid flow is one of the most common natural 

phenomena in our daily life. During the past 

decades, fluid simulation methods based on the 

Navier-Stokes equation have achieved great 

success. Related research plays significant roles in 

fields including aerospace engineering, physical 

animation, and game production. However, 

simulating the dynamics of fluid flows accurately 

and efficiently remains a challenging issue. The 

computational cost of traditional fluid simulation 

algorithms based on the Naiver-Stokes equation is 

extremely expensive to obtain stable and reliable 

results with a constrained time step size and grid 

resolution.

Nowadays, deep learning methods have been 

widely applied to solve physically-based tasks. As a 

replacement for traditional analytical methods, deep 

learning methods are capable of extracting 

information and regular patterns from large-scale 

datasets. Therefore, it is reasonable for learning-based 

models to realize fluid simulation with high precision 

and computing efficiency. Deep learning methods 

have been proven to be competitive alternatives 

against traditional methods in tasks including fluid 

generation 
[1-2]

 and super-resolution flows 
[3-4]

.

Predicting the temporal evolution of physical 

evolutions using deep learning methods has raised 

much interest in recent years. Neural networks 

(NNs) are employed for learning temporally 

coherent features in point clouds 
[5]

. Latent space 

physics (LSP) 
[6]

 proposes models containing 

convolutional neural networks (CNNs) and long 

short-term memory (LSTM) prediction network for 

learning the temporal evolution of fluid flows in the 

compressed latent space to reduce computational 

cost. Latent space subdivision (LSS) 
[7]

 further 

proposes an end-to-end NN architecture, so as to 

predict the dynamics of fluid flows robustly with 

high temporal stability by subdividing the latent 

space according to physical meanings including 

density, velocity, and inflow.

Although these works can produce realistic fluid 

motions with impressive visual effects, it remains a 

challenging problem to ensure the similarity between 

the predicted flow shape and the simulated ones by 

using physically-based simulators. On the other hand, 

long-term matching of the flow shape will benefit the 

prediction of interactive behaviors between fluids and 

surrounding objects. In this paper, we provide a 

learning-based high-performance algorithm for long-

term motion prediction of physical flow field 

evolution, including density and velocity fields. We 

focus on maintaining the long-term similarity of the 

macroscopic distributions in fluid flows since they 

dominate the interactive behaviors between fluids and 

environment objects.

Our model mainly consists of two functional sub-

networks to realize long-term prediction of velocity 

and density fields. The long-term velocity prediction 

sub-network first employs fully convolutional U-Net-

based autoencoders to compress input velocity field 

sequences into relatively smaller latent codes and then 

carries out the temporal evolution of velocity fields 

with LSTM-based networks in latent space. In 
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addition, we make use of loss functions containing 

terms that have physical meanings 
[8-9]

 to improve the 

temporal evolution reality of velocity fields. With 

predicted velocity fields, another long-term density 

prediction sub-network is proposed to predict long-

term density field evolution with a single frame of 

density field and a sequence of previous velocity 

fields as inputs. Input density and velocity fields are 

encoded to latent codes with fully convolutional 

autoencoders. In comparison with density advection in 

traditional fluid simulation, our density prediction sub-

network implements long-term density advection 

through a single step of calculation in latent space, 

which ensures the reality of macroscopic distributions 

in density fields with significant speed-ups. The 

encoding-decoding network architecture also helps the 

long-term motion prediction model compress high-

dimensional information in physical fields and 

significantly improves computing efficiency. Finally, 

we obtain a high-performance long-term motion 

prediction model concentrating on macroscopic 

distributions for physical fields of fluid flows. We will 

demonstrate our model’s accuracy and efficiency with 

several 2D and 3D gas simulation datasets. The major 

contributions of our work could be concluded as 

follows:

(1) A learning-based algorithm taking advantage 

of prior physical information to realize long-term 

prediction of the macroscopic distributions of 

velocity fields;

(2) A long-term density prediction approach to 

predict the macroscopic distributions of density 

fields based on predicted macroscopic distributions 

of prior velocity fields;

(3) End-to-end high-performance network 

architectures to achieve significant speed-ups for 

the motion prediction of fluid flows.

1　　Related Work

In this paper, our models are trained with 

incompressible fluid flow datasets simulated with the 

Navier-Stokes equation:

¶u
¶t

+ (u·Ñ)u = f -
1
ρ
Ñp +

μ
ρ
Du

Ñ·u = 0

where u, ρ, μ and f denote flow velocity, 

pressure, flow density, kinematic viscosity, and 

external forces, respectively.

Traditional fluid simulation methods are mainly 

based on the Navier-Stoke equation. Related research 

mainly focuses on two aspects: improvement of visual 

effects and computing efficiency. All kinds of 

numerical methods like BFECC 
[10-11]

 are proposed to 

improve the visual effects of stable fluid simulation 

through large amounts of iterations. Fedkiw et al. 
[12]

 

added extra parameters to realize vorticity confinement 

of the same scale in the whole fluid simulation area. 

Other vorticity confinement methods were also 

proposed to further improve detail reconstruction by 

considering concrete distributions of simulation 

areas 
[13-14]

. To deal with the huge computational cost 

and difficult parallelization caused by traditional stable 

fluid simulation, the lattice Boltzmann method (LBM) 

was proposed to improve simulation efficiency with 

parallel computing by using discretized distribution 

function 
[15-16]

. Wen et al. 
[17]

 proposed vorticity 

confinement methods for LBM algorithms. They 

achieved real-time simulation with high grid resolution 

by using the LBM model's parallelism and powerful 

computing capability provided by GPU. In addition to 

LBM methods, high-performance fluid solvers based 

on particle level set 
[18] 

and the fluid implicit particle 

(FLIP) method 
[19]

 have become mainstream tools for 

detailed liquid simulations. Except for those grid-based 

Eulerian methods, Lagrangian methods represented by 
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smoothed particle hydrodynamics (SPH)
[20-21]

 are other 

competitive alternatives for fluid simulation. Other 

methods focus on topics like the large-scale simulation 

of the complex dynamics of ferrofluids 
[22]

 and 

interesting behaviors of various mixtures 
[23]

.

Besides, data-driven machine learning methods
[24]

, 

especially those related to deep learning methods, are 

widely applied in many fields. As for computer 

graphics, physics-based deep learning methods 

combine physical modeling and deep learning 

techniques and produce impressive results in many 

related topics. Ladicky et al 
[25]

. took physics-based 

fluid simulation as a regression problem and achieved 

real-time calculation of systems with up to 2 million 

particles. Thuerey et al. 
[26]

 investigated the accuracy of 

deep learning models for Reynolds-Averaged Navier-

Stokes solutions and obtained a mean relative pressure 

and a velocity error of less than 3% across a range of 

previously unseen airfoil shapes, which showed the 

potential capability of deep learning methods in 

solving physical systems. Related research has proven 

that deep learning methods can be competitive 

alternatives compared with traditional methods in 

solving physical problems. Other data-driven models 

perform well in tasks such as generating desired 

implicit surfaces 
[2]

 and droplet formation 
[27]

. Hennigh 

et al.
[28]

 compressed both computation time and 

memory usage of lattice Boltzmann flow simulation 

with the proposed Lat-Net based on deep neural 

networks. CNNs are applied for extracting features and 

generating descriptors from fluid data to track 

deformable fluid regions 
[29]

. Another data-driven 

approach that leverages the approximation power of 

deep learning with the precision of standard solvers is 

proposed to obtain fast and highly realistic simulations 

based on incompressible Euler equations 
[8]

. Deep 

residual recurrent neural networks are employed to 

learn the dynamical systems of subsurface multi-phase 

flows 
[30]

. Graph networks also perform well in physics-

based learning tasks representing the state of particles 

as nodes in graphs 
[2, 31]

. Kim et al. demonstrated that 

complex parameterizations of fluid flow could be 

handled in reduced spaces to significantly improve 

simulation speed 
[1]

. Apart from simulation in the form 

of Eulerian representation, deep learning techniques 

could be used to learn stable and temporally coherent 

feature spaces from data in the form of Lagrangian 

representation 
[32]

. For example, temporally coherent 

features in point clouds could be learned by neural 

networks 
[5]

. Moreover, deep learning methods can 

extract motion information from rendered image 

sequences 
[33]

. Further applications in PBDL involve 

large-scale problems like predictions of global weather 

conditions with data-driven methods 
[34]

.

When it comes to the temporal evolution of fluid 

flow discussed in this paper, Wiewel et al.
[6]

 

demonstrated for the first time that the space and time 

function of 3D could be predicted within reduced 

latent spaces through neural networks. Then another 

end-to-end trained neural network architecture was 

proposed to predict the complex dynamics of fluid 

flow systems robustly with high temporal stability 
[7]

. 

When their temporal evolution models perform fare 

well with pressure fields, the prediction of velocity 

fields significantly differs from ground truth data. 

Eivazi et al.
[35]

 applied the autoencoder-LSTM method 

to predict fluid flow evolution in unsteady fluid 

systems. In the past several years, generative 

adversarial networks (GAN) have become highly 

successful in image generation tasks 
[36-37]

. GAN models 

are proven to be effective in enhancing the details of 

fluid systems. Xie et al. proposed a temporally 

coherent generative model, namely tempoGAN, which 

could infer realistic high-resolution details to the super-
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resolution problems for fluid flows 
[3]

. TecoGAN 

proposed by Chu et al. provided a generative 

adversarial model for video super-resolution tasks 
[38]

. 

Temporally coherent solutions could be obtained 

without sacrificing spatial details through the 

TecoGAN model. The multi-pass GAN model deals 

with 3D generative problems by decomposing 

functions on the Cartesian field into multiple smaller 

sub-problems to learn more efficiently 
[4]

. In addition, 

subsequent works further realize GAN-based coherent 

super-resolution generation for fluid flows 
[39]

.

Although these works successfully produced 

realistic fluid motions, few of them aimed to ensure 

the similarity between the predicted flow shape and 

the simulated ones using physically-based simulators. 

The model proposed in this paper concentrates on 

matching the network-predicted velocity and density 

fields with the simulated data in macroscopic 

distributions accurately in long-time ranges by taking 

advantage of physical laws. Besides, most previous 

physics-based learning approaches 
[6, 40]

 aim to 

accelerate physical simulation by replacing several 

steps in traditional simulation methods. Our proposed 

model only makes use of velocity and density fields 

and successfully predicts their macroscopic 

distributions with a speed significantly improved. In 

the following sections, we will demonstrate more 

details and performance evaluations of our models.

2　　Method

Our model aims to realize high-performance 

long-term motion prediction for physical fields 

including the velocity field v and the density field x of 

fluid flows. Compared with previous works, our long-

term motion prediction model focuses on matching the 

predicted physical fields with the simulated data, 

especially in macroscopic distributions over long 

periods. The structure diagram of the prediction model 

for the long-term motion of fluid flows is shown in 

Fig. 1. One sub-network for velocity field prediction is 

shown in the top half, and the other sub-network for 

density field prediction is shown in the bottom half.

Fig. 1 Pipeline of the proposed model for long-term motion prediction of fluid flows

•• 439

5

Zhu et al.: Learning-Based High-Performance Algorithm for Long-Term Motion Pr

Published by Journal of System Simulation, 2023



第 35 卷第 3 期

2023 年 3 月

Vol. 35 No. 3

Mar. 2023

系统仿真学报
Journal of System Simulation

http: // www.china-simulation.com

Our model consists of two functional sub-

networks, so as to realize long-term velocity and 

density field prediction, respectively. It is worth 

noting that the long-term density prediction model 

requires prior velocity frames as inputs for density 

field prediction. Therefore, long-term density field 

prediction should be based on velocity field 

prediction in practical applications. According to 

these two functional sub-networks, our model is 

capable of predicting the long-term temporal 

evolution of physical fields for fluid flows. Given f 

as the representation of our motion prediction model, 

the whole prediction process can be demonstrated by 

the following equation which assumes that vt - n + 1, 

vt - n + 2,…, vt and xt are known:

(vt+1vt+o xt+1xt+o+1 )=f (vt-n+1vt xt )

where n denotes the input length, and o denotes 

the predicted length of velocity fields.

Since our long-term motion prediction model 

employs fully convolutional autoencoders to 

compress physical fields with high complexity to 

relatively smaller latent codes, some details in 

physical fields will be ignored to improve prediction 

efficiency. In order to prevent the long-term density 

field prediction model from being affected by details 

lost in velocity fields, the two sub-networks are 

trained independently and combined for physical 

field prediction. Details of the sub-networks for 

velocity and density field prediction will be 

described in Sections 2.1 and 2.2, respectively. In 

addition, the combination of sub-networks for 

physical fields' motion prediction will be illustrated 

in Section 2.3.

2.1　　Long-Term Velocity Field Prediction

In this section, we propose a sub-network for 

long-term velocity field prediction with a sequence 

of previous velocity fields as inputs. By taking flv as 

the representation of the long-term velocity field 

prediction function, the sub-network can be 

expressed as

(vt + 1vt + 2vt + o )= flv (vt - n + 1vt - n + 2vt ).

The network architecture of the long-term 

velocity prediction sub-network is shown in the top 

half of Fig. 1. The U-Net-based encoder-decoder 

network first compresses the velocity field to a latent 

code. Then LSTM-based prediction network 

performs temporal evolution in the latent space. Our 

model differs from the prediction networks for 

predicting pressure field in Latent Space Physics
 [6]

 in 

the following three aspects:

(1) 3D fully convolutional U-Net-based 

networks are used to encode and decode velocity 

fields temporally and spatially;

(2) 1D convolutional layer is employed for 

transforming input length to output length instead of 

repeating latent codes the same times as the predicted 

length;

(3) temporal evolution in latent spaces is realized 

with a simplified single-layer LSTM network.

The U-Net-based autoencoders composed of 3D 

fully convolutional networks can simultaneously 

encode and decode the temporal and spatial 

information of velocity fields. Details of the 

encoding-decoding network architecture can be 

found in Table 1 where autoencoders composed of 

five encode layers are shown. Specifically, fei and fdi 

denote layers in the encoder and decoder stack, r 

denotes the resolution of data, and d denotes the 

dimensionality of velocity fields. ti and to denote the 

input and output length. The 1D convolutional 

network can retain more information for long-term 

temporal evolution than the repeated method used in 

Latent Space Physics 
[6]

. Simplified LSTM-based 
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prediction networks composed of a single layer of 

LSTM and following batch normalization layers 

reduce the complexity of our prediction model 

significantly. These modifications improve our 

model's computing efficiency and make it more 

appropriate for long-term velocity field prediction.

To make the velocity fields predicted by our 

long-term velocity prediction sub-network consistent 

with physical laws, we employ a law-based loss 

function containing four parts as its minimization 

target. Apart from the pixel-wise L1 norm loss, the 

weighted loss of velocity fields guides our model to 

center on the macroscopic distributions of velocity 

fields. In addition, the other two terms are added to 

guide the sub-network to learn boundary conditions 

and fluid incompressibility. The law-based loss 

function is the weighted sum of these four parts:

Lvel = ∑
f = t + 1

f = t + o

αLnorm (v͂f  vf )+ βLweight (v͂f  vf )+

   γLdiv (v͂f )+ (1 - α - β - γ)Lbound (v͂f ) (1)

where α  β, and γ are trade-off parameters set 

empirically. Here

Lnorm (v͂f  vf )= |v͂f - vf |1;

Lweight (v͂f  vf )= |(v͂f - vf )vf |1;

Ldiv (v͂f )= |Ñ × v͂f |;

Lbound (v͂f )= |v͂f^
|.

denote the L1 norm loss between the predicted 

velocity fields v͂ and corresponding ground truth v, 

the velocity-weighted loss weighted by the absolute 

value of velocity fields’ ground truth, the absolute 

value of the predicted velocity fields’ divergence 

(in Literature [8] and [9]), and the absolute value of 

velocity perpendicular to rigid boundaries, 

respectively.

2.2　　Long-Term Density Field Prediction

In fluid flow simulation algorithms, density 

fields are normally updated with velocity fields 

according to the advection function xt+1= xt - vtdt. Our 

long-term density prediction sub-network is proposed 

to realize density field prediction with a single frame 

of density field xt and a sequence of predicted 

velocity fields vt vt + 1vt + o. Given fld as the 

representation of the long-term density field 

prediction function, this sub-network can be 

expressed as

(xt+ 1 xt+ 2 xt+ o+ 1 )= fld (xt vt vt+ 1vt+ o ).

As shown in the bottom half of Fig. 1, the sub-

network maintains the U-Net-based encoding-

decoding architecture to accelerate the temporal 

evolution of density fields. Different from traditional 

iteration methods for temporal evolution, the long-

term density prediction sub-network first repeats the 

input density field as many times as the frame 

number of the input velocity fields. The input 

velocity fields and repeated density fields are 

encoded with fully convolutional networks. Then the 

velocity and repeated density latent code is added to 

density-velocity latent code for further temporal 

evolution with a simplified single-layer LSTM 

network similar to the network used in velocity field 

prediction. Different from the concatenation of 

density and velocity latent code used in LSS 
[7]

, the 

Table 1　Parameters of U-Net-based autoencoder layers

Layer

fe1

fe2

fe3

fe4

fe5

fd1

fd2

fd3

fd4

fd5

Kernel

4

2

2

2

2

2

2

2

2

4

Stride

2

2

2

2

2

2

2

2

2

2

Activation

Linear

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

LeakyReLU

Output

r/2

r/4

r/8

r/16

r/32

r/16

r/8

r/4

r/2

r

Feature

16ti

32ti

64ti

128ti

256ti

128to

64to

32to

16to

dto
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sum of the density and velocity latent code is applied 

to our model as a replacement. For one thing, it is 

reasonable to utilize the sum of density and velocity 

latent code since the density field is updated as the 

weighted sum of the original density and velocity 

field in the advection function, namely xt+1= xt - vtdt. 

As a result, our model actually carries out the 

advection of density fields in the latent space. For 

another, the sum of latent code reduces the size of 

density-velocity latent code by half compared with 

the concatenation method, which reduces the 

complexity of our model in the sacrifice of some 

details in physical fields. Compared with the density 

advection method, which should be calculated 

sequentially, our model could obtain continuous 

multiple frames of density fields in one calculation, 

so as to effectively improve the computation speed. 

In conclusion, the long-term density prediction sub-

network realizes the prediction of macroscopic 

distributions of density fields in long-time ranges 

with the help of prior velocity fields and improves 

computing efficiency with advection in latent spaces.

The minimization problem solved by the long-

term density prediction sub-network contains two 

parts. The first part focuses on L1 norm loss between 

the predicted density fieldsx͂and corresponding 

ground truth x, while the second part focuses on 

density-weighted loss. The whole loss function is the 

weighted sum of those two parts

Lden= ∑
f = t+1

f = t+o+1

λ|x͂f  - xf |1+ (1-λ)|(x͂f  - xf )xf |1=

∑
f = t+1

f = t+o+1

λLnorm (x͂f  xf ) + (1-λ)Lweight (x͂f  xf ) (2)

where λ is a trade-off parameter set empirically.

2.3　　Long-Term Motion Prediction

With the two long-term prediction sub-networks 

proposed in previous sections, we can predict both 

velocity fields and density fields. With a sequence of 

velocity fields and density fields known, we can first 

predict velocity fields by the long-term velocity 

prediction sub-network. Then the density field can be 

predicted through the long-term density prediction 

sub-network with a single frame of density field and 

the predicted velocity fields as inputs.

As shown in Fig. 1, the whole prediction 

process can be demonstrated by the following 

equations, which assume that vt - n + 1, vt - n + 2, … , vt, 

and xt are known

(vt + 1 vt + 2vt + o )= flv (vt - n + 1 vt - n + 2vt )
(xt + 1 xt + 2xt + o + 1 )= fld (xtvtvt + 1vt + o ).

Specifically, flv and fld denote the long-term velocity 

and density prediction sub-network respectively.

3　　Training and Evaluation

In this section, the temporal evolution models 

proposed above will be evaluated by simulation 

datasets. Peak signal-to-noise ratio (PSNR) is used as 

the basic metric for similarity evaluation between the 

prediction and ground truth. Different from the 

PSNR calculated for RGB images, PSNR used in our 

experiments is calculated according to the following 

equation for physical fields:

PSNR = 10 lg(
x 2

max

MSE
) 

where xmaxrepresents the maximum absolute value in 

the ground truth physical fields, and mean squared 

error (MSE) represents the mean squared error 

between the prediction and ground truth. In addition, 

cosine similarity is added to evaluate the similarity of 

the macroscopic distributions in physical fields 

between our temporal evolution results and the 

corresponding ground truth. In addition, MSE is 

appended for analysis. All of our datasets are divided 
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into three parts for training, validation, and testing. In 

model training, 80% of our datasets are used for 

model training, 10% for validation, and 10% for 

testing. Our models are trained for 40 epochs with an 

Adam optimizer of 0.001 learning rate.

3.1　　Training Datasets

The fluid flow datasets used for our model 

training are simulated by an open-source framework, 

namely Mantaflow. Mantaflow is a Navier-Stokes 

equation solver, which simulates fluid flows with 

discrete points in space and time. Since our model 

pays attention to the temporal evolution of density 

and velocity fields, the datasets mainly contain 

randomized smoke flows in different scenes. 

Furthermore, we employ several typical scenes for 

dataset generation including single source smoke, 

single source smoke interacting with obstacles, and 

smoke in rotating and moving cups. Example 

simulation sequences of our datasets are displayed 

in Fig. 2, which shows smoke in rotating and 

moving cups (top row), single source smoke (center 

row), and single source smoke with obstacles 

(bottom row). The smoke density is rendered as 

white with a black background, and the obstacle is 

rendered as blue.

As for the single source smoke and single 

source smoke interacting with obstacles scenes, the 

smoke source is randomly distributed at the bottom 

of the simulation area, which helps generate various 

data. In the rising smoke scene, the initial 

distribution is randomly generated for data diversity. 

Single source smoke scenes in our datasets are 

simulated with open boundaries, while the rising 

smoke scenes are simulated within the space 

surrounded by rigid boundaries. Datasets of different 

resolutions are generated for training and evaluating 

our model. For comparison, we also add rotating cup 

(2D) and rotating and moving cup (2D) datasets used 

in LSS
 [7]

. The rotating cup scene simulates the 

motion of cold smoke in a rotating cup-shaped 

obstacle, while the rotating and moving cup scene 

additionally applies a translation. In addition, two 

simple 3D datasets are employed for training our 

model. More detailed information of our datasets is 

listed in Table 2.

3.2　　Long-Term Prediction Sub-networks

Our long-term prediction sub-networks including 

Table 2　Statistics of simulation datasets used in this paper

Scene Type

Single source smoke (3D)

Single source smoke with 

obstacles (3D)

Single source smoke (2D)

Single source smoke (2D)

Single source smoke with 

obstacles (2D)

Single source smoke with 

obstacles (2D)

Rising smoke (2D)

Rising smoke(2D)

Rotating cup (2D)

Rotating and moving cup (2D)

Resolution

643

643

642

1282

642

1282

642

1282

642

642

Scene

600

600

600

600

600

600

1 000

1 000

600

300

Frames

100

200

200

200

200

200

200

200

200

300

Fig. 2 Example simulation sequences visualization of our 
2D datasets
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the density and velocity prediction sub-networks are 

evaluated by rotating cup datasets (2D) and single 

source smoke (2D & 3D) datasets listed in Table 2. 

The long-term density prediction sub-network takes a 

single frame of density field and a sequence of prior 

velocity fields as inputs and outputs density fields 

sequence over long periods. Our model is trained to 

realize 2D density field prediction in 150 time steps. 

The long-term velocity prediction sub-network 

realizes velocity field prediction in a long-time range 

with a sequence of previous velocity fields as inputs. 

In our experiments, the sub-network predicts the 

following 50 frames of 2D velocity fields with the 

previous 30 frames as inputs. The latent space size of 

the long-term motion prediction model is set to be 

1 024 and 2 048 for the data resolution of 64×64 and 

128×128, respectively. As for 3D datasets, our 

sub-networks are trained to predict the previous 30 

frames of density fields and velocity fields with the 

latent space size of 1 024.

(1) Long-term velocity prediction sub-network 

The trade-off hyper-parameters in the long-term 

velocity prediction sub-network (Eq. (1)) are set as 

α = 0.5, β = 0.2, and γ = 0.2. The performance of the 

long-term velocity prediction sub-network on the 

single source smoke datasets is given in Table 3. As 

for the typical simulation scene of single source 

smoke (2D & 3D), our model can reach a PSNR 

higher than 23 and a cosine similarity value higher 

than 0.96. It can be seen that our model can predict 

the macroscopic distributions of velocity field 

evolution over long periods in the sacrifice of some 

detailed distributions. Since randomly moving 

obstacles are applied in the rotating cup datasets 

(2D), it is reasonable for our model to show 

relatively poor performance on velocity prediction.

(2) Long-term density prediction sub-network

The trade-off hyper-parameter in the long-term 

density prediction sub-network (Eq. (2)) is set to α =

0.5. In Table 3, evaluation metrics of the long-term 

density prediction sub-network are listed. In addition, 

higher PSNR and cosine similarity are better. Our 

model accurately predicts velocity and density fields 

with high cosine similarity on a series of 2D and 3D 

benchmarks. Our model shows outstanding 

performance with PSNR higher than 23 and cosine 

similarity value higher than 0.88 on the simulation 

datasets (2D & 3D). Furthermore, our model can 

accurately predict density fields over long periods 

with the information of velocity fields.

Table 3　Statistics of long-term prediction sub-networks

Datasets

Single source smoke (3D)

Single source smoke with obstacles (3D)

Rotating cup (2D)

Rotating and moving cup (2D)

Single source smoke (2D)

Single source smoke (2D)

Single source smoke with obstacles (2D)

Single source smoke with obstacles (2D)

Resolution

643

643

642

642

642

1282

642

1282

Long-term velocity

PSNR

41.123

32.289

20.430

20.279

23.627

25.024

23.810

27.098

Cos similarity

0.997

0.993

0.835

0.863

0.969

0.976

0.966

0.960

MSE

0.002 2

0.006 6

0.008 0

0.030 8

0.084 0

0.264 8

0.070 8

0.095 4

Long-term density

PSNR

26.279

35.717

23.244

25.579

28.212

27.377

28.866

29.092

Cos similarity

0.889

0.993

0.970

0.972

0.985

0.978

0.986

0.954

MSE

0.002 6

0.000 2

0.002 9

0.003 8

0.003 8

0.006 4

0.003 4

0.003 8
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The statistics of time-varying PSNR and cosine 

similarity value are shown in Fig. 3. As shown in Fig. 

3(a) and 3(b), although PSNR gradually decreases 

with time steps, the long-term velocity prediction 

sub-network can maintain high cosine similarity in a 

longer time range. A similar time-varying 

phenomenon can also be found in Fig. 3(c) and 3(d) 

for long-term density field prediction. Therefore, our 

long-term prediction sub-networks can reconstruct 

macroscopic distributions of physical fields with a 

high degree of resemblance over long periods, and 

our model can achieve high accuracy for long-term 

density field prediction.

(3) Long-term velocity prediction sub-network 

v.s. LSP model

LSP 
[6]

 proposed a learning-based method for the 

temporal evolution of fluid flows, which shared a 

similar target of predicting physical fields with our 

long-term velocity prediction sub-network. To 

evaluate the improvement of our model for long-term 

velocity field prediction, we compare the model with 

the LSP model realizing velocity field prediction of 50 

time steps with the previous 30 time steps as inputs on 

rising smoke datasets. The size of latent space is set to 

be 1 024 for both models. Our method is compared 

with the LSP method quantitatively in Table 4. In 

addition, higher PSNR and cosine similarity are better. 

However, lower MSE is welcomed. As can be seen 

from Table 4, the proposed long-term velocity 

prediction sub-network outperforms the LSP model 

significantly in long-term velocity field prediction. 

0   30  60  90 120 150

Fig. 3 Time-varying PSNR and cosine similarity of long-term prediction sub-networks
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Our method outperforms the LSP method with 

higher PSNR and cosine similarity on rising smoke 

datasets through network architecture modification 

and guidance of loss functions that have physical 

meanings. In addition, our model shows more 

remarkable accuracy improvements on high-

resolution datasets. Time-varying PSNR and cosine 

similarity of the LSP model and our long-term 

velocity prediction sub-network are given in Fig. 4. 

It can be seen that our model outperforms the LSP 

model with higher PSNR and cosine similarity on 

long-term velocity field prediction.

In Fig. 5, we visualize the prediction results of 

our long-term velocity prediction sub-network, LSP 

model, and corresponding ground truth on single 

source smoke datasets (2D). The prediction results of 

our model are shown in the top row, those of the LSP 

model are shown in the middle row, and the 

corresponding ground truth is shown in the bottom 

row. It can be seen that our sub-network achieves 

significant improvements in the capability of 

predicting the trend of velocity field evolution over 

long-time ranges. The LSP model obtains a mean 

PSNR of 12.938 and a cosine similarity of 0.627. In 

contrast, our model can reach a mean PSNR of 

23.627 and cosine similarity of 0.969 averaged over 

test datasets. In addition, our model can predict the 

macroscopic distributions of velocity field evolution, 

while the LSP model seems to predict the average 

distributions of prior velocity fields.

Table 4　Comparison between our long-term velocity prediction sub-network and LSP model on rising smoke datasets

Datasets

Rising smoke (2D)

Rising smoke (2D)

Resolution

642

1282

LSP model

PSNR

9.588

6.138

Cos similarity

0.750

0.697

MSE

0.816

2.523

Our model

PSNR

13.929

15.802

Cos similarity

0.888

0.907

MSE

0.264

0.279

Fig. 4 Time-varying PSNR and cosine similarity of long-term velocity prediction sub-network and LSP model

Fig. 5 Visualization Result comparison between our 
long-term velocity prediction sub-network and LSP model
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3.3　　Long-Term Motion Prediction

As illustrated in Section 2.3, our long-term 

prediction sub-networks can realize long-term 

predictions for both velocity and density fields. 

Single source smoke (2D & 3D) and rising smoke 

(2D) datasets are employed for evaluating the long-

term motion prediction model. We first train the long-

term density and velocity prediction sub-networks 

separately. Then the predicted velocity field output 

from the long-term velocity prediction sub-network 

is used as input for the long-term density prediction 

sub-network to obtain prediction results. Finally, our 

long-term motion prediction model is trained to 

predict the previous 50 frames for 2D datasets and 30 

frames for 3D datasets.

According to the previous analysis, our long-

term velocity prediction sub-network mainly focuses 

on macroscopic distributions, but it neglects parts of 

detailed distributions. In Table 5, we provide the 

statistics of the long-term density prediction of 

original and predicted velocity fields, with original 

and predicted velocity fields from the long-term 

velocity prediction sub-network as inputs. Moreover, 

higher PSNR and cosine similarity are better, but 

lower MSE is welcomed. The long-term density 

prediction sub-network will suffer from the lack of 

detailed distributions in predicted velocity fields with 

lower PSNR and cosine similarity and higher MSE 

compared with density prediction based on original 

velocity fields. However, the PSNR higher than 17 

and the cosine similarity higher than 0.8 show that 

our long-term motion prediction model can still 

realize macroscopic distributions of density field 

prediction with considerable accuracy. More 

visualization results in Section 4 will further prove 

our conclusion.

4　　Results

The effectiveness of our temporal evolution 

models is verified through visualization results and 

performance measurement with a series of tests.

4.1　　Visualization Results

Typical outputs of long-term prediction sub-

networks can be seen in Figs. 6 and 7. In Fig. 6, the 

density field and corresponding velocity field 

prediction of a testing example from the single 

source smoke datasets (resolution of 64×64) are 

shown. Model outputs are shown in the top row, and 

the corresponding ground truth is shown in the 

bottom row. Compared with the ground truth shown 

in the bottom row, our approach successfully predicts 

the macroscopic distributions of velocity fields with 

previous frames as inputs. In addition, the long-term 

Table 5　Statistics of long-term density prediction sub-network

Datasets

Single source smoke (3D)

Single source smoke with obstacles (3D)

Single source smoke (2D)

Single source smoke (2D)

Rising smoke (2D)

Rising smoke (2D)

Resolution

643

643

642

1282

642

1282

Prediction with original 

velocity fields

PSNR

26.279

35.717

28.621

25.886

18.465

19.483

Cos similarity

0.889

0.993

0.990

0.984

0.895

0.897

MSE

0.003

0.000 2

0.002

0.003

0.009

0.019

Prediction with predicted 

velocity fields

PSNR

26.738

35.340

17.904

18.418

17.760

17.717

Cos similarity

0.865

0.989

0.842

0.886

0.875

0.837

MSE

0.004

0.000 02

0.023

0.019

0.010

0.029
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density prediction sub-network also predicts the 

motion of single source smoke over long periods 

accurately. Another testing example from single 

source smoke with obstacles datasets (resolution of 

128×128) is displayed in Fig. 7. Model outputs are 

shown in the top row, and the corresponding ground 

truth is shown in the bottom row. It proves that our 

model not only achieves high accuracy on high-

resolution datasets but also learns interactions 

between smoke and obstacles without additional 

input information about obstacles. Our approach 

could learn the interactions between smoke and 

obstacles based on velocity fields.

As shown in Fig. 8, our long-term density 

prediction sub-network can also be applied to other 

simulation scenes like cold smoke in a rotating cup. 

Specifically, model outputs are shown in the top row, 

and the corresponding ground truth is shown in the 

bottom row. In addition, prediction examples of 

rotating and moving cup datasets (2D) with a 

translation are shown in Fig. 9. Specifically, model 

outputs are shown in the top row, and the 

corresponding ground truth is shown in the bottom 

row. It can be seen that our model can predict the 

macroscopic distributions of density fields with 

random moving obstacles.

Fig. 7 Long-term density field prediction of single source smoke with obstacles datasets (resolution of 128×128)

Fig. 6 Long-term density and velocity field prediction of single source smoke datasets (resolution of 64×64)

Fig. 8 Long-term density field prediction of rotating cup 
datasets (resolution of 64×64)
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In order to predict density and velocity fields by 

the long-term motion prediction model, the long-term 

density prediction sub-network and the velocity 

prediction sub-network are trained and tested with 

datasets in the first place. Then output velocity fields 

from the long-term velocity prediction sub-network 

are used as inputs for predicting density fields. 

Outputs of the long-term density prediction sub-

network with predicted and original velocity fields as 

inputs and corresponding ground truth are listed 

together for comparison in Fig. 10, where density 

fields predicted with predicted and original velocity 

fields are shown in the top and middle row, and 

corresponding ground truth is shown in the bottom 

row. Therefore, our approach can predict the 

macroscopic distributions of density fields similar to 

ground truth with predicted velocity fields. It can be 

found that the output density fields of the long-term 

motion prediction model are less accurate than those 

predicted with original velocity fields by the long-

term density prediction sub-network. Low accuracy 

of density field prediction is caused by parts of 

detailed distribution loss in velocity field prediction. 

However, the motion tendency of outputs from the 

long-term motion prediction model is still consistent 

with the ground truth. In other words, the 

macroscopic distributions of physical fields can be 

successfully predicted by the proposed model. 

Prediction results of the 3D single source smoke 

scenes in Figs. 11 and 12 demonstrate the capabilities 

of our long-term motion prediction model to achieve 

satisfying temporal evolution results on simple 3D 

datasets with encoders composed of deeper 

convolutional networks. In Fig. 11, density fields 

predicted with predicted and original velocity fields 

are shown in the top and middle row, and 

corresponding ground truth is shown in the bottom 

row. Therefore, our approach can accurately predict 

the macroscopic distributions of physical fields in 

simple 3D scenes. In Fig. 12, density fields predicted 

with predicted and original velocity fields are shown 

in the top and middle row, and corresponding ground 

truth is shown in the bottom row.

Fig. 9 Long-term density field prediction of rotating and 
moving cup datasets (resolution of 64×64)

Fig. 10 Long-term density field prediction of single source 
smoke datasets (resolution of 64×64)

Fig. 11 Long-term density field prediction of 3D single 
source smoke datasets (resolution of 64×64×64)
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4.2　　Performance Measurement

Different from traditional fluid simulation 

methods updating physical fields frame by frame, the 

U-Net-based encoders extracting information from 

sequences of input physical fields and the advection 

in latent space enable our model to predict the 

physical fields of many frames in one calculation. 

We further compare the long-term velocity prediction 

sub-network with the LSP and LSS models (velocity 

prediction only). As shown in the method 

performance measurement in Table 6, our model can 

increase speed by up to three times for rising smoke 

(resolution of 64×64) datasets and about two times 

for the rising smoke datasets (higher resolution of 

128×128) with the same size of latent space. As for 

density prediction, our model implements rapid long-

term density advection through one calculation in 

latent space instead of iteration frame by frame. It 

can be found that 3D fully convolutional encoding-

decoding networks and advection carried out in latent 

space help our model improve both accuracy and 

performance. Concrete mean inference time statistics 

of our long-term prediction sub-networks on different 

datasets can be found in Table 7. All performance 

measurements are created with the time module 

provided by python on Intel(R) Xeon(R) E5-2690 v4 

(2.60 GHz) and NVIDIA GTX TITAN X (Pascal).

4.3　　Limitations

While our model shows outstanding 

performance on long-term motion prediction of 

physical field evolution, there are still several aspects 

that can be improved by follow-up works. Firstly, our 

model concentrates on the prediction of macroscopic 

distributions in physical fields in the sacrifice of 

parts of details. As a result, detail loss becomes more 

serious and leads to blurred visual effects as the data 

Fig. 12 Long-term density field prediction of 3D single 
source smoke with obstacles datasets (resolution of 64×64×64)

Table 6　Timing of a simulation step computed via long-term 
velocity prediction sub-network, LSP model, and LSS 

model averaged over testing data (50 time steps prediction) 
Our model achieves further speed-ups than the LSP 

and LSS models ms 

Datasets

LSP model

LSS model

Our model

Rising smoke

64×64

1.50

17.31

0.56

Rising smoke

128×128

1.83

24.20

0.92

Table 7　Timing of a simulation step computed via long-term 
prediction sub-networks averaged over testing data (50 time 

steps for velocity prediction and 150 time steps for 
density prediction)

Datasets

Single source 

smoke (3D)

Single source smoke 

with obstacles (3D)

Rotating cup (2D)

Rotating and 

moving cup (2D)

Rising smoke (2D)

Rising smoke (2D)

Single source 

smoke (2D)

Single source 

smoke (2D)

Single source smoke 

with obstacles (2D)

Single source smoke 

with obstacles (2D)

Resolution

643

643

642

642

642

1282

642

1282

642

1282

Velocity 

prediction/

ms

25.80

25.43

0.59

0.84

0.56

0.92

0.66

1.06

0.65

1.03

Density 

prediction/

ms

24.14

23.66

0.41

0.52

0.66

1.02

0.43

0.89

0.43

0.81
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resolution increases. Therefore, it will be meaningful 

to combine our model with some mature detail 

enhancement methods to achieve better visualization 

results. Secondly, we find it difficult for the proposed 

model to realize motion prediction for complex 3D 

datasets in our experiments. We believe that with 

appropriate modifications, our model can reach better 

performance on more complex 3D datasets.

5　　Conclusion

In this paper, we propose a learning-based 

algorithm focusing on matching macroscopic 

distributions of the network-predicted physical fields 

with the simulated data based on the Navier-Stokes 

equation. Instead of replacing specific steps in 

traditional fluid simulation, our algorithm predicts 

density and velocity fields based on an initial frame 

of density fields and a sequence of previous velocity 

fields. Our model consists of two functional sub-

networks that can predict density fields and velocity 

fields separately. The whole model reasonably 

combines the two fields to achieve long-term 

velocity and density field prediction. The proposed 

end-to-end high-performance network architectures 

can yield significant simulation performance 

increments. Through detailed evaluations with a 

series of 2D and 3D simulation datasets, we 

demonstrate remarkable improvements in predicting 

velocity and density fields provided by our approach 

compared with previous works.

In conclusion, we obtain an end-to-end high-

performance model that significantly improves 

accuracy and efficiency for long-term motion 

prediction of physical flow field evolution. Our work 

can be applied to rapidly generate virtual scenes and 

animations. Besides, it is also applicable to generate 

simulation data in addition to limited real data for 

data-efficient tasks.

As for future work, it will be reasonable to take 

advantage of information from pressure fields to 

control and improve temporal evolution reality since 

our model is only based on density and velocity 

fields of fluid flows. Moreover, transfer learning 

methods could be applied to our model to increase its 

extensibility on all kinds of simulation scenes. Our 

approach can be applied to accelerate existing 

simulation methods as well.
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