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Learning-Based High-Performance Algorithm for Long-Term Motion Prediction of
Fluid Flows

Abstract

Abstract: Simulating the dynamics of fluid flows accurately and efficiently remains a challenging task
nowadays, and traditional fluid simulation methods consume large computational resources to obtain
accurate results. Deep learning methods have developed rapidly, which makes data-based fluid simulation
and generation possible. In this paper, a motion prediction algorithm for long-term fluid simulation is
proposed, which is based on a density field with a single frame and a previous velocity field of a
sequence. The model focuses on matching the velocity and density fields predicted by the neural network
with the simulated data based on the Navier-Stokes equation at a macroscopic level. With the help of fully
convolutional U-Net-based autoencoders and LSTM-based time series prediction subnetworks, the model
better maintains the visual macroscopic similarity during temporal evolutions and significantly improves
computation speed. As a result, the proposed method achieves accurate and rapid long-term motion
prediction for the macroscopic distributions of flow field evolution. In addition, the paper demonstrates
the effectiveness and efficiency of the proposed algorithm on a series of benchmark tests based on two-
dimensional (2D) and three-dimension (3D) simulation data.
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Zhu Jingyuan , Ma Huimin", Yuan Jian
(1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: Simulating the dynamics of fluid flows accurately and efficiently remains a challenging task
nowadays, and traditional fluid simulation methods consume large computational resources to obtain
accurate results. Deep learning methods have developed rapidly, which makes data-based fluid simulation
and generation possible. In this paper, a motion prediction algorithm for long-term fluid simulation is
proposed, which is based on a density field with a single frame and a previous velocity field of a
sequence. The model focuses on matching the velocity and density fields predicted by the neural network
with the simulated data based on the Navier-Stokes equation at a macroscopic level. With the help of
fully convolutional U-Net-based autoencoders and LSTM-based time series prediction subnetworks, the
model better maintains the visual macroscopic similarity during temporal evolutions and significantly
improves computation speed. As a result, the proposed method achieves accurate and rapid long-term
motion prediction for the macroscopic distributions of flow field evolution. In addition, the paper
demonstrates the effectiveness and efficiency of the proposed algorithm on a series of benchmark tests
based on two-dimensional (2D) and three-dimension (3D) simulation data.
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0 Introduction

Fluid flow is one of the most common natural
phenomena in our daily life. During the past
decades, fluid simulation methods based on the
Navier-Stokes equation have achieved great
success. Related research plays significant roles in
fields including aerospace engineering, physical
animation, and game production. However,
simulating the dynamics of fluid flows accurately
and efficiently remains a challenging issue. The
computational cost of traditional fluid simulation
algorithms based on the Naiver-Stokes equation is
extremely expensive to obtain stable and reliable
results with a constrained time step size and grid
resolution.

Nowadays, deep learning methods have been
widely applied to solve physically-based tasks. As a
replacement for traditional analytical methods, deep
learning methods are capable of extracting
information and regular patterns from large-scale
datasets. Therefore, it is reasonable for learning-based
models to realize fluid simulation with high precision
and computing efficiency. Deep learning methods
have been proven to be competitive alternatives
against traditional methods in tasks including fluid
generation ' and super-resolution flows .

Predicting the temporal evolution of physical
evolutions using deep learning methods has raised
much interest in recent years. Neural networks
(NNs) are employed for Ilearning temporally
coherent features in point clouds . Latent space
(LSP) o proposes models

physics containing

convolutional neural networks (CNNs) and long
short-term memory (LSTM) prediction network for
learning the temporal evolution of fluid flows in the
compressed latent space to reduce computational

" further

cost. Latent space subdivision (LSS)
proposes an end-to-end NN architecture, so as to
predict the dynamics of fluid flows robustly with
high temporal stability by subdividing the latent
space according to physical meanings including
density, velocity, and inflow.

Although these works can produce realistic fluid
motions with impressive visual effects, it remains a
challenging problem to ensure the similarity between
the predicted flow shape and the simulated ones by
using physically-based simulators. On the other hand,
long-term matching of the flow shape will benefit the
prediction of interactive behaviors between fluids and
surrounding objects. In this paper, we provide a
learning-based high-performance algorithm for long-
term motion prediction of physical flow field
evolution, including density and velocity fields. We
focus on maintaining the long-term similarity of the
macroscopic distributions in fluid flows since they
dominate the interactive behaviors between fluids and
environment objects.

Our model mainly consists of two functional sub-
networks to realize long-term prediction of velocity
and density fields. The long-term velocity prediction
sub-network first employs fully convolutional U-Net-
based autoencoders to compress input velocity field
sequences into relatively smaller latent codes and then
carries out the temporal evolution of velocity fields

with LSTM-based networks in latent space. In
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addition, we make use of loss functions containing
terms that have physical meanings " to improve the
temporal evolution reality of velocity fields. With
predicted velocity fields, another long-term density
prediction sub-network is proposed to predict long-
term density field evolution with a single frame of
density field and a sequence of previous velocity
fields as inputs. Input density and velocity fields are
encoded to latent codes with fully convolutional
autoencoders. In comparison with density advection in
traditional fluid simulation, our density prediction sub-
network implements long-term density advection
through a single step of calculation in latent space,
which ensures the reality of macroscopic distributions
in density fields with significant speed-ups. The
encoding-decoding network architecture also helps the
long-term motion prediction model compress high-
dimensional information in physical fields and
significantly improves computing efficiency. Finally,
we obtain a high-performance long-term motion
prediction model concentrating on macroscopic
distributions for physical fields of fluid flows. We will
demonstrate our model’s accuracy and efficiency with
several 2D and 3D gas simulation datasets. The major
contributions of our work could be concluded as
follows:

(1) A learning-based algorithm taking advantage
of prior physical information to realize long-term
prediction of the macroscopic distributions of
velocity fields;

(2) A long-term density prediction approach to
predict the macroscopic distributions of density
fields based on predicted macroscopic distributions
of prior velocity fields;

(3) End-to-end high-performance network

architectures to achieve significant speed-ups for

the motion prediction of fluid flows.

1 Related Work

In this paper, our models are trained with
incompressible fluid flow datasets simulated with the

Navier-Stokes equation:

ou 1 U
bl NMu=f— — lnd
o +@w-Vu=f P Vp+ p Au
V-u=0

where u, p, n and f denote flow velocity,
pressure, flow density, kinematic viscosity, and
external forces, respectively.

Traditional fluid simulation methods are mainly
based on the Navier-Stoke equation. Related research
mainly focuses on two aspects: improvement of visual
effects and computing efficiency. All kinds of

numerical methods like BFECC '

10-11]
are proposed to

improve the visual effects of stable fluid simulation
through large amounts of iterations. Fedkiw et al. o
added extra parameters to realize vorticity confinement
of the same scale in the whole fluid simulation area.
Other vorticity confinement methods were also
proposed to further improve detail reconstruction by

considering concrete distributions of simulation

[13
areas

" To deal with the huge computational cost
and difficult parallelization caused by traditional stable
fluid simulation, the lattice Boltzmann method (LBM)
was proposed to improve simulation efficiency with
parallel computing by using discretized distribution

16] (17]
. Wen et al

function " proposed  vorticity
confinement methods for LBM algorithms. They
achieved real-time simulation with high grid resolution
by using the LBM model's parallelism and powerful
computing capability provided by GPU. In addition to
LBM methods, high-performance fluid solvers based
on particle level set "and the fluid implicit particle
(FLIP) method " have become mainstream tools for
detailed liquid simulations. Except for those grid-based

Eulerian methods, Lagrangian methods represented by
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[20-21]
are other

smoothed particle hydrodynamics (SPH)
competitive alternatives for fluid simulation. Other
methods focus on topics like the large-scale simulation
of the complex dynamics of ferrofluids * and
interesting behaviors of various mixtures =

Besides, data-driven machine learning methods[m,
especially those related to deep learning methods, are
widely applied in many fields. As for computer
learning  methods

graphics, physics-based deep

combine physical modeling and deep learning

techniques and produce impressive results in many

[25]

related topics. Ladicky et al . took physics-based
fluid simulation as a regression problem and achieved
real-time calculation of systems with up to 2 million
particles. Thuerey et al. el investigated the accuracy of
deep learning models for Reynolds-Averaged Navier-
Stokes solutions and obtained a mean relative pressure
and a velocity error of less than 3% across a range of
previously unseen airfoil shapes, which showed the
potential capability of deep learning methods in
solving physical systems. Related research has proven
that deep learning methods can be competitive
alternatives compared with traditional methods in
solving physical problems. Other data-driven models
perform well in tasks such as generating desired
implicit surfaces “ and droplet formation e, Hennigh
et al. ™ compressed both computation time and
memory usage of lattice Boltzmann flow simulation
with the proposed Lat-Net based on deep neural
networks. CNNs are applied for extracting features and
generating descriptors from fluid data to track

®l " Another data-driven

deformable fluid regions
approach that leverages the approximation power of
deep learning with the precision of standard solvers is
proposed to obtain fast and highly realistic simulations
based on incompressible Euler equations [8] Deep

residual recurrent neural networks are employed to

learn the dynamical systems of subsurface multi-phase
flows ™. Graph networks also perform well in physics-
based learning tasks representing the state of particles
as nodes in graphs “* Kim et al. demonstrated that
complex parameterizations of fluid flow could be
handled in reduced spaces to significantly improve
simulation speed ", Apart from simulation in the form
of Eulerian representation, deep learning techniques
could be used to learn stable and temporally coherent
feature spaces from data in the form of Lagrangian

[32]

representation . For example, temporally coherent

features in point clouds could be learned by neural

[5

networks . Moreover, deep learning methods can

extract motion information from rendered image

*! Further applications in PBDL involve

sequences
large-scale problems like predictions of global weather
conditions with data-driven methods .

When it comes to the temporal evolution of fluid
flow discussed in this paper, Wiewel et al. o
demonstrated for the first time that the space and time
function of 3D could be predicted within reduced
latent spaces through neural networks. Then another
end-to-end trained neural network architecture was
proposed to predict the complex dynamics of fluid
flow systems robustly with high temporal stability n
When their temporal evolution models perform fare
well with pressure fields, the prediction of velocity
fields significantly differs from ground truth data.
Eivazi et al.”™” applied the autoencoder-LSTM method
to predict fluid flow evolution in unsteady fluid
systems. In the past several years, generative
adversarial networks (GAN) have become highly

. GAN models

.. . [36-37]
successful in image generation tasks

are proven to be effective in enhancing the details of
fluid systems. Xie et al. proposed a temporally
coherent generative model, namely tempoGAN, which

could infer realistic high-resolution details to the super-
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resolution problems for fluid flows ¥ TecoGAN
proposed by Chu et al. provided a generative
adversarial model for video super-resolution tasks o,
Temporally coherent solutions could be obtained
sacrificing through the

TecoGAN model. The multi-pass GAN model deals

without spatial ~ details

with 3D generative problems by decomposing
functions on the Cartesian field into multiple smaller
sub-problems to learn more efficiently " In addition,
subsequent works further realize GAN-based coherent
super-resolution generation for fluid flows .

Although these works successfully produced
realistic fluid motions, few of them aimed to ensure
the similarity between the predicted flow shape and
the simulated ones using physically-based simulators.
The model proposed in this paper concentrates on
matching the network-predicted velocity and density
fields with the simulated data in macroscopic
distributions accurately in long-time ranges by taking
advantage of physical laws. Besides, most previous

40)

physics-based learning approaches [6’ aim to

Long-Term Velocity Prediction Sub-network

W
1 g

[ LSTM <+ z <

Predicted Density L

Frames decoder

Fig. 1

> —> z —> ConvlD—>» LSTM —» —

(8]

accelerate physical simulation by replacing several
steps in traditional simulation methods. Our proposed
model only makes use of velocity and density fields
and successfully predicts their = macroscopic
distributions with a speed significantly improved. In
the following sections, we will demonstrate more

details and performance evaluations of our models.
2 Method

Our model aims to realize high-performance
long-term motion prediction for physical fields
including the velocity field v and the density field x of
fluid flows. Compared with previous works, our long-
term motion prediction model focuses on matching the
predicted physical fields with the simulated data,
especially in macroscopic distributions over long
periods. The structure diagram of the prediction model
for the long-term motion of fluid flows is shown in
Fig. 1. One sub-network for velocity field prediction is
shown in the top half, and the other sub-network for

density field prediction is shown in the bottom half.

encoder

Input Density Fram
Repeated Density Frame

encoder

Pipeline of the proposed model for long-term motion prediction of fluid flows
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Our model consists of two functional sub-
networks, so as to realize long-term velocity and
density field prediction, respectively. It is worth
noting that the long-term density prediction model
requires prior velocity frames as inputs for density
field prediction. Therefore, long-term density field
prediction should be based on velocity field
prediction in practical applications. According to
these two functional sub-networks, our model is
capable of predicting the long-term temporal
evolution of physical fields for fluid flows. Given f
as the representation of our motion prediction model,
the whole prediction process can be demonstrated by
the following equation which assumes that v,_, .,

v -+, v,and x, are known:
X ) Wit 5V X)),

where n denotes the input length, and o denotes

t—n+2"

(vt+1’ 5 Vior Xipps

the predicted length of velocity fields.

Since our long-term motion prediction model
employs fully convolutional autoencoders to
compress physical fields with high complexity to
relatively smaller latent codes, some details in
physical fields will be ignored to improve prediction
efficiency. In order to prevent the long-term density
field prediction model from being affected by details
lost in velocity fields, the two sub-networks are
trained independently and combined for physical
field prediction. Details of the sub-networks for
velocity and density field prediction will be
described in Sections 2.1 and 2.2, respectively. In
addition, the combination of sub-networks for
physical fields' motion prediction will be illustrated

in Section 2.3.
2.1 Long-Term Velocity Field Prediction

In this section, we propose a sub-network for

long-term velocity field prediction with a sequence

of previous velocity fields as inputs. By taking £, as
the representation of the long-term velocity field
can be

prediction function, the sub-network

expressed as

OV Vo) = e O 1oV o5 V)

The network architecture of the long-term
velocity prediction sub-network is shown in the top
half of Fig. 1. The U-Net-based encoder-decoder
network first compresses the velocity field to a latent
code. Then LSTM-based prediction network
performs temporal evolution in the latent space. Our
model differs from the prediction networks for
predicting pressure field in Latent Space Physics “ in
the following three aspects:

(1) 3D fully convolutional U-Net-based
networks are used to encode and decode velocity
fields temporally and spatially;

(2) 1D convolutional layer is employed for
transforming input length to output length instead of
repeating latent codes the same times as the predicted
length;

(3) temporal evolution in latent spaces is realized
with a simplified single-layer LSTM network.

The U-Net-based autoencoders composed of 3D
fully convolutional networks can simultaneously
encode and decode the

temporal and spatial

information of velocity fields. Details of the
encoding-decoding network architecture can be
found in Table 1 where autoencoders composed of
five encode layers are shown. Specifically, f,, and f
denote layers in the encoder and decoder stack, r
denotes the resolution of data, and d denotes the
dimensionality of velocity fields. ¢ and ¢, denote the
input and output length. The 1D convolutional
network can retain more information for long-term
temporal evolution than the repeated method used in

Latent Space Physics . Simplified LSTM-based
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prediction networks composed of a single layer of
LSTM and following batch normalization layers
reduce the complexity of our prediction model
significantly. These modifications improve our
model's computing efficiency and make it more

appropriate for long-term velocity field prediction.

Table 1 Parameters of U-Net-based autoencoder layers
Layer Kernel Stride  Activation Output Feature
fa 4 2 Linear r2 16¢,
S 2 2 LeakyReLU  r/4 32¢
s 2 2 LeakyReLU r/8 64t
Ss 2 2 LeakyReLU  r/16 128t
fos 2 2 LeakyReLU  r/32 256t
fa 2 2 LeakyReLU  #/16 1281,
fo 2 2 LeakyReLU r/8 64t,
I 2 2 LeakyReLU r/4 32t
S 2 2 LeakyReLU r/2 16¢,

Jis 4 2 LeakyReLU r dt,

To make the velocity fields predicted by our
long-term velocity prediction sub-network consistent
with physical laws, we employ a law-based loss
function containing four parts as its minimization
target. Apart from the pixel-wise L1 norm loss, the
weighted loss of velocity fields guides our model to
center on the macroscopic distributions of velocity
fields. In addition, the other two terms are added to
guide the sub-network to learn boundary conditions
and fluid incompressibility. The law-based loss

function is the weighted sum of these four parts:

f=t+o

Lv01: 2 aLnorm (‘N}f’ vf)—'—ﬁLWCight (ﬁf’ vf)+
f=t+1
VLdiv (f)f)-i-(l —a_ﬁ_y)l‘bound (‘7}‘) (1)

where o, f, and y are trade-off parameters set
empirically. Here

Lo @ V)=V~ 5

Lyeight 0> V)= 0= v vl 15

Ly (‘7_/‘): V- ‘7f|2

Lbound (‘7[) = |§f¢|

denote the L1 norm loss between the predicted
velocity fields v and corresponding ground truth v,
the velocity-weighted loss weighted by the absolute
value of velocity fields’ ground truth, the absolute
value of the predicted velocity fields” divergence
(in Literature [8] and [9]), and the absolute value of
rigid  boundaries,

velocity  perpendicular  to

respectively.
2.2 Long-Term Density Field Prediction

In fluid flow simulation algorithms, density
fields are normally updated with velocity fields
according to the advection function x,,,= x,— vd¢. Our
long-term density prediction sub-network is proposed
to realize density field prediction with a single frame
of density field x, and a sequence of predicted

velocity fields v, v TR Given f,; as the

t+1°° t+o°

representation of the long-term density field

prediction function, this sub-network can be

expressed as
X

(x 420 Xiyorl ):fld (xt’ Vo Vir1o 5 Viso ).

As shown in the bottom half of Fig. 1, the sub-

t+1°

network maintains the U-Net-based encoding-
decoding architecture to accelerate the temporal
evolution of density fields. Different from traditional
iteration methods for temporal evolution, the long-
term density prediction sub-network first repeats the
input density field as many times as the frame
number of the input velocity fields. The input
velocity fields and repeated density fields are
encoded with fully convolutional networks. Then the
velocity and repeated density latent code is added to
density-velocity latent code for further temporal
evolution with a simplified single-layer LSTM
network similar to the network used in velocity field
prediction. Different from the concatenation of

density and velocity latent code used in LSS " the
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sum of the density and velocity latent code is applied
to our model as a replacement. For one thing, it is
reasonable to utilize the sum of density and velocity
latent code since the density field is updated as the
weighted sum of the original density and velocity
field in the advection function, namely x,,,= x,— vdz.
As a result, our model actually carries out the
advection of density fields in the latent space. For
another, the sum of latent code reduces the size of
density-velocity latent code by half compared with
the concatenation method, which reduces the
complexity of our model in the sacrifice of some
details in physical fields. Compared with the density
advection method, which should be calculated
sequentially, our model could obtain continuous
multiple frames of density fields in one calculation,
so as to effectively improve the computation speed.
In conclusion, the long-term density prediction sub-
network realizes the prediction of macroscopic
distributions of density fields in long-time ranges
with the help of prior velocity fields and improves
computing efficiency with advection in latent spaces.

The minimization problem solved by the long-
term density prediction sub-network contains two
parts. The first part focuses on L1 norm loss between
the predicted density fieldsxand corresponding
ground truth x, while the second part focuses on
density-weighted loss. The whole loss function is the

weighted sum of those two parts

f=tro+]

L= > AR =X+ (=D&, —x)x | =
f=t+1
Sf=tro+]

S M G X)HADL i (B X)) (2)

f=t+1
where A is a trade-off parameter set empirically.

2.3 Long-Term Motion Prediction

With the two long-term prediction sub-networks

proposed in previous sections, we can predict both
velocity fields and density fields. With a sequence of
velocity fields and density fields known, we can first
predict velocity fields by the long-term velocity
prediction sub-network. Then the density field can be
predicted through the long-term density prediction
sub-network with a single frame of density field and
the predicted velocity fields as inputs.

1, the whole prediction

As shown in Fig.

process can be demonstrated by the following

equations, which assume that v, ., v, ., ", V,
and x, are known
Orats Vi Vo) S (s Vispias V),
(X1 Xpi2s X)) = 1a (X Vi Vi V)

Specifically, f,, and f,; denote the long-term velocity

and density prediction sub-network respectively.
3 Training and Evaluation

In this section, the temporal evolution models
proposed above will be evaluated by simulation
datasets. Peak signal-to-noise ratio (PSNR) is used as
the basic metric for similarity evaluation between the
prediction and ground truth. Different from the
PSNR calculated for RGB images, PSNR used in our
experiments is calculated according to the following

equation for physical fields:

2

PSNR=10 1g(%52 ,

where x__ represents the maximum absolute value in

max
the ground truth physical fields, and mean squared
error (MSE) represents the mean squared error
between the prediction and ground truth. In addition,
cosine similarity is added to evaluate the similarity of
the macroscopic distributions in physical fields
between our temporal evolution results and the

corresponding ground truth. In addition, MSE is

appended for analysis. All of our datasets are divided
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into three parts for training, validation, and testing. In
model training, 80% of our datasets are used for
model training, 10% for validation, and 10% for
testing. Our models are trained for 40 epochs with an

Adam optimizer of 0.001 learning rate.
3.1 Training Datasets

The fluid flow datasets used for our model
training are simulated by an open-source framework,
namely Mantaflow. Mantaflow is a Navier-Stokes
equation solver, which simulates fluid flows with
discrete points in space and time. Since our model
pays attention to the temporal evolution of density
and velocity fields, the datasets mainly contain
randomized smoke flows in different scenes.
Furthermore, we employ several typical scenes for
dataset generation including single source smoke,
single source smoke interacting with obstacles, and
smoke in rotating and moving cups. Example
simulation sequences of our datasets are displayed
in Fig. 2, which shows smoke in rotating and
moving cups (top row), single source smoke (center
row), and single source smoke with obstacles
(bottom row). The smoke density is rendered as

white with a black background, and the obstacle is
( \

Fig. 2 Example simulation sequences visualization of our
2D datasets

rendered as blue.

\

As for the single source smoke and single
source smoke interacting with obstacles scenes, the
smoke source is randomly distributed at the bottom
of the simulation area, which helps generate various
data. In the rising smoke scene, the initial
distribution is randomly generated for data diversity.
Single source smoke scenes in our datasets are
simulated with open boundaries, while the rising
smoke scenes are simulated within the space
surrounded by rigid boundaries. Datasets of different
resolutions are generated for training and evaluating
our model. For comparison, we also add rotating cup
(2D) and rotating and moving cup (2D) datasets used
in LSS". The rotating cup scene simulates the
motion of cold smoke in a rotating cup-shaped
obstacle, while the rotating and moving cup scene
additionally applies a translation. In addition, two
simple 3D datasets are employed for training our
model. More detailed information of our datasets is

listed in Table 2.

Table 2  Statistics of simulation datasets used in this paper

Scene Type Resolution Scene Frames
Single source smoke (3D) 64° 600 100
Single source smoke with
64° 600 200
obstacles (3D)
Single source smoke (2D) 64° 600 200
Single source smoke (2D) 128° 600 200
Single source smoke with
64 600 200
obstacles (2D)
Single source smoke with N
1287 600 200
obstacles (2D)
Rising smoke (2D) 64* 1000 200
Rising smoke(2D) 1282 1000 200
Rotating cup (2D) 64> 600 200
Rotating and moving cup (2D) 64> 300 300

3.2 Long-Term Prediction Sub-networks

Our long-term prediction sub-networks including
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the density and velocity prediction sub-networks are
evaluated by rotating cup datasets (2D) and single
source smoke (2D & 3D) datasets listed in Table 2.
The long-term density prediction sub-network takes a
single frame of density field and a sequence of prior
velocity fields as inputs and outputs density fields
sequence over long periods. Our model is trained to
realize 2D density field prediction in 150 time steps.
The long-term velocity prediction sub-network
realizes velocity field prediction in a long-time range
with a sequence of previous velocity fields as inputs.
In our experiments, the sub-network predicts the
following 50 frames of 2D velocity fields with the
previous 30 frames as inputs. The latent space size of
the long-term motion prediction model is set to be
1 024 and 2 048 for the data resolution of 64x64 and
128x128, respectively. As for 3D datasets, our
sub-networks are trained to predict the previous 30
frames of density fields and velocity fields with the
latent space size of 1 024.

(1) Long-term velocity prediction sub-network

The trade-off hyper-parameters in the long-term
velocity prediction sub-network (Eq. (1)) are set as
a=0.5, f=0.2, and y=0.2. The performance of the

long-term velocity prediction sub-network on the

single source smoke datasets is given in Table 3. As
for the typical simulation scene of single source
smoke (2D & 3D), our model can reach a PSNR
higher than 23 and a cosine similarity value higher
than 0.96. It can be seen that our model can predict
the macroscopic distributions of velocity field
evolution over long periods in the sacrifice of some
detailed distributions. Since randomly moving
obstacles are applied in the rotating cup datasets
(2D), it is reasonable for our model to show
relatively poor performance on velocity prediction.
(2) Long-term density prediction sub-network
The trade-off hyper-parameter in the long-term
density prediction sub-network (Eq. (2)) is set to a=
0.5. In Table 3, evaluation metrics of the long-term
density prediction sub-network are listed. In addition,
higher PSNR and cosine similarity are better. Our
model accurately predicts velocity and density fields
with high cosine similarity on a series of 2D and 3D
benchmarks. Our model shows outstanding
performance with PSNR higher than 23 and cosine
similarity value higher than 0.88 on the simulation
datasets (2D & 3D). Furthermore, our model can
accurately predict density fields over long periods

with the information of velocity fields.

Table 3  Statistics of long-term prediction sub-networks

Long-term velocity

Long-term density

Datasets Resolution

PSNR  Cos similarity ~MSE PSNR  Cos similarity ~ MSE
Single source smoke (3D) 64° 41.123 0.997 0.0022 26.279 0.889 0.002 6
Single source smoke with obstacles (3D) 64° 32.289 0.993 0.006 6 35.717 0.993 0.000 2
Rotating cup (2D) 647 20.430 0.835 0.0080 23.244 0.970 0.002 9
Rotating and moving cup (2D) 64° 20.279 0.863 0.0308 25.579 0.972 0.003 8
Single source smoke (2D) 64* 23.627 0.969 0.0840 28.212 0.985 0.003 8
Single source smoke (2D) 128 25.024 0.976 0.2648 27.377 0.978 0.006 4
Single source smoke with obstacles (2D) 647 23.810 0.966 0.070 8 28.866 0.986 0.003 4
Single source smoke with obstacles (2D) 128° 27.098 0.960 0.0954  29.092 0.954 0.003 8
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The statistics of time-varying PSNR and cosine
similarity value are shown in Fig. 3. As shown in Fig.
3(a) and 3(b), although PSNR gradually decreases
with time steps, the long-term velocity prediction
sub-network can maintain high cosine similarity in a
similar  time-varying

longer time range. A

phenomenon can also be found in Fig. 3(c) and 3(d)
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for long-term density field prediction. Therefore, our
long-term prediction sub-networks can reconstruct
macroscopic distributions of physical fields with a
high degree of resemblance over long periods, and
our model can achieve high accuracy for long-term

density field prediction.
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Fig.3 Time-varying PSNR and cosine similarity of long-term prediction sub-networks

(3) Long-term velocity prediction sub-network
v.s. LSP model

LSp proposed a learning-based method for the
temporal evolution of fluid flows, which shared a
similar target of predicting physical fields with our
long-term  velocity prediction sub-network. To
evaluate the improvement of our model for long-term

velocity field prediction, we compare the model with

the LSP model realizing velocity field prediction of 50

time steps with the previous 30 time steps as inputs on
rising smoke datasets. The size of latent space is set to
be 1 024 for both models. Our method is compared
with the LSP method quantitatively in Table 4. In
addition, higher PSNR and cosine similarity are better.
However, lower MSE is welcomed. As can be seen
from Table 4, the proposed long-term velocity

prediction sub-network outperforms the LSP model

significantly in long-term velocity field prediction.
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Our method outperforms the LSP method with
higher PSNR and cosine similarity on rising smoke
datasets through network architecture modification
and guidance of loss functions that have physical
meanings. In addition, our model shows more

remarkable accuracy improvements on high-

resolution datasets. Time-varying PSNR and cosine
similarity of the LSP model and our long-term
velocity prediction sub-network are given in Fig. 4.
It can be seen that our model outperforms the LSP
model with higher PSNR and cosine similarity on

long-term velocity field prediction.

Table 4 Comparison between our long-term velocity prediction sub-network and LSP model on rising smoke datasets

) LSP model Our model
Datasets Resolution — —
PSNR Cos similarity MSE PSNR Cos similarity MSE
Rising smoke (2D) 64 9.588 0.750 0.816 13.929 0.888 0.264
Rising smoke (2D) 128 6.138 0.697 2.523 15.802 0.907 0.279
20.0 1.0p
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Fig. 4 Time-varying PSNR and cosine similarity of long-term velocity prediction sub-network and LSP model

In Fig. 5, we visualize the prediction results of
our long-term velocity prediction sub-network, LSP
model, and corresponding ground truth on single
source smoke datasets (2D). The prediction results of
our model are shown in the top row, those of the LSP
model are shown in the middle row, and the
corresponding ground truth is shown in the bottom
row. It can be seen that our sub-network achieves
significant improvements in the capability of
predicting the trend of velocity field evolution over
long-time ranges. The LSP model obtains a mean
PSNR of 12.938 and a cosine similarity of 0.627. In
contrast, our model can reach a mean PSNR of

23.627 and cosine similarity of 0.969 averaged over

test datasets. In addition, our model can predict the
macroscopic distributions of velocity field evolution,
while the LSP model seems to predict the average

distributions of prior velocity fields.

15 25 35
Time step

Fig. 5 Visualization Result comparison between our
long-term velocity prediction sub-network and LSP model
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3.3 Long-Term Motion Prediction

As illustrated in Section 2.3, our long-term
prediction sub-networks can realize long-term
predictions for both velocity and density fields.
Single source smoke (2D & 3D) and rising smoke
(2D) datasets are employed for evaluating the long-
term motion prediction model. We first train the long-
term density and velocity prediction sub-networks
separately. Then the predicted velocity field output
from the long-term velocity prediction sub-network
is used as input for the long-term density prediction
sub-network to obtain prediction results. Finally, our
long-term motion prediction model is trained to
predict the previous 50 frames for 2D datasets and 30
frames for 3D datasets.

According to the previous analysis, our long-
term velocity prediction sub-network mainly focuses

on macroscopic distributions, but it neglects parts of

detailed distributions. In Table 5, we provide the
statistics of the long-term density prediction of
original and predicted velocity fields, with original
and predicted velocity fields from the long-term
velocity prediction sub-network as inputs. Moreover,
higher PSNR and cosine similarity are better, but
lower MSE is welcomed. The long-term density
prediction sub-network will suffer from the lack of
detailed distributions in predicted velocity fields with
lower PSNR and cosine similarity and higher MSE
compared with density prediction based on original
velocity fields. However, the PSNR higher than 17
and the cosine similarity higher than 0.8 show that
our long-term motion prediction model can still
realize macroscopic distributions of density field
prediction with considerable accuracy. More

visualization results in Section 4 will further prove

our conclusion.

Table 5 Statistics of long-term density prediction sub-network

Prediction with original

Prediction with predicted

Datasets Resolution velocity fields velocity fields
PSNR  Cos similarity MSE  PSNR  Cos similarity MSE
Single source smoke (3D) 64° 26.279 0.889 0.003 26.738 0.865 0.004
Single source smoke with obstacles (3D) 64° 35.717 0.993 0.0002 35.340 0.989 0.000 02
Single source smoke (2D) 64’ 28.621 0.990 0.002 17.904 0.842 0.023
Single source smoke (2D) 128° 25.886 0.984 0.003 18.418 0.886 0.019
Rising smoke (2D) 64 18.465 0.895 0.009 17.760 0.875 0.010
Rising smoke (2D) 128 19.483 0.897 0.019 17.717 0.837 0.029
4 Results density field and corresponding velocity field

The effectiveness of our temporal evolution
models is verified through visualization results and

performance measurement with a series of tests.
4.1 Visualization Results

Typical outputs of long-term prediction sub-

networks can be seen in Figs. 6 and 7. In Fig. 6, the

prediction of a testing example from the single
source smoke datasets (resolution of 64x64) are
shown. Model outputs are shown in the top row, and
the corresponding ground truth is shown in the
bottom row. Compared with the ground truth shown
in the bottom row, our approach successfully predicts
the macroscopic distributions of velocity fields with

previous frames as inputs. In addition, the long-term

http: // www.china-simulation.com

. 447 -

Published by Journal of System Simulation, 2023

13



Journal of System Simulation, Vol. 35 [2023], Iss. 3, Art. 1

5 35 555 3 1
2023 4E3 A

ARG H AR

Journal of System Simulation

Vol. 35 No. 3
Mar. 2023

density prediction sub-network also predicts the
motion of single source smoke over long periods
accurately. Another testing example from single
source smoke with obstacles datasets (resolution of
128x%128) is displayed in Fig. 7. Model outputs are
shown in the top row, and the corresponding ground

truth is shown in the bottom row. It proves that our

20 30 40 50
Time step

(a) Long-term velocity field prediction

model not only achieves high accuracy on high-
resolution datasets but also learns interactions
between smoke and obstacles without additional
input information about obstacles. Our approach

could learn the interactions between smoke and

50

obstacles based on velocity fields.

olel?]?
nE

7l

30 40
Time step
(b) Long-term density field prediction

Fig. 6 Long-term density and velocity field prediction of single source smoke datasets (resolution of 64x64)

/

70 80

7

100 11(

jes)

Time slcp

Fig. 7 Long-term density field prediction of single source smoke with obstacles datasets (resolution of 128x128)

As shown in Fig. 8, our long-term density
prediction sub-network can also be applied to other
simulation scenes like cold smoke in a rotating cup.
Specifically, model outputs are shown in the top row,
and the corresponding ground truth is shown in the
bottom row. In addition, prediction examples of
rotating and moving cup datasets (2D) with a
translation are shown in Fig. 9. Specifically, model
outputs are shown in the top row, and the
corresponding ground truth is shown in the bottom

row. It can be seen that our model can predict the

macroscopic distributions of density fields with

random moving obstacles.

110 130 150
Time step

Fig. 8 Long-term density field prediction of rotating cup
datasets (resolution of 64x64)

http: // www.china-simulation.com

. 448 -

https://dc-china-simulation.researchcommons.org/journal/vol35/iss3/1
DOI: 10.16182/j.issn1004731x.joss.22-1507

14



Zhu et al.: Learning-Based High-Performance Algorithm for Long-Term Motion Pr

35 4555 3
2023 %3 H

150

Fig. 9 Long-term density field prediction of rotating and

110 120 130 140

Time step
moving cup datasets (resolution of 64x64)

In order to predict density and velocity fields by
the long-term motion prediction model, the long-term
density prediction sub-network and the velocity
prediction sub-network are trained and tested with
datasets in the first place. Then output velocity fields
from the long-term velocity prediction sub-network
are used as inputs for predicting density fields.
Outputs of the long-term density prediction sub-
network with predicted and original velocity fields as
inputs and corresponding ground truth are listed
together for comparison in Fig. 10, where density
fields predicted with predicted and original velocity
fields are shown in the top and middle row, and
corresponding ground truth is shown in the bottom
row. Therefore, our approach can predict the
macroscopic distributions of density fields similar to
ground truth with predicted velocity fields. It can be
found that the output density fields of the long-term
motion prediction model are less accurate than those
predicted with original velocity fields by the long-
term density prediction sub-network. Low accuracy
of density field prediction is caused by parts of
detailed distribution loss in velocity field prediction.
However, the motion tendency of outputs from the
long-term motion prediction model is still consistent
with the ground truth. In other words, the
macroscopic distributions of physical fields can be

successfully predicted by the proposed model.

Zhu Jingyuan, et al: Learning-Based High-Performance Algorithm for
Long-Term Motion Prediction of Fluid Flows

Vol. 35 No. 3
Mar. 2023

Prediction results of the 3D single source smoke
scenes in Figs. 11 and 12 demonstrate the capabilities
of our long-term motion prediction model to achieve
satisfying temporal evolution results on simple 3D
datasets with encoders composed of deeper
convolutional networks. In Fig. 11, density fields
predicted with predicted and original velocity fields
are shown in the top and middle row, and
corresponding ground truth is shown in the bottom
row. Therefore, our approach can accurately predict
the macroscopic distributions of physical fields in
simple 3D scenes. In Fig. 12, density fields predicted
with predicted and original velocity fields are shown
in the top and middle row, and corresponding ground

truth is shown in the bottom row.
- .
1

30 40
Time step
Fig. 10 Long-term density field prediction of single source
smoke datasets (resolution of 64x64)
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Fig. 11 Long-term density field prediction of 3D single
source smoke datasets (resolution of 64x64x64)
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Fig. 12 Long-term density field prediction of 3D single
source smoke with obstacles datasets (resolution of 64x64x64)

4.2 Performance Measurement

Different from traditional fluid simulation
methods updating physical fields frame by frame, the
U-Net-based encoders extracting information from
sequences of input physical fields and the advection
in latent space enable our model to predict the
physical fields of many frames in one calculation.
We further compare the long-term velocity prediction
sub-network with the LSP and LSS models (velocity
prediction only). As shown in the method
performance measurement in Table 6, our model can
increase speed by up to three times for rising smoke
(resolution of 64x64) datasets and about two times
for the rising smoke datasets (higher resolution of
128x128) with the same size of latent space. As for
density prediction, our model implements rapid long-
term density advection through one calculation in
latent space instead of iteration frame by frame. It
can be found that 3D fully convolutional encoding-
decoding networks and advection carried out in latent
space help our model improve both accuracy and
performance. Concrete mean inference time statistics
of our long-term prediction sub-networks on different
datasets can be found in Table 7. All performance
measurements are created with the time module
provided by python on Intel(R) Xeon(R) E5-2690 v4
(2.60 GHz) and NVIDIA GTX TITAN X (Pascal).

Table 6 Timing of a simulation step computed via long-term
velocity prediction sub-network, LSP model, and LSS
model averaged over testing data (50 time steps prediction)
Our model achieves further speed-ups than the LSP

and LSS models ms
Rising smoke Rising smoke
Datasets
64x64 128%128
LSP model 1.50 1.83
LSS model 17.31 24.20
Our model 0.56 0.92

Table 7 Timing of a simulation step computed via long-term
prediction sub-networks averaged over testing data (50 time
steps for velocity prediction and 150 time steps for

density prediction)
Velocity Density
Datasets Resolution prediction/ prediction/
ms ms
Single source
64° 25.80 24.14
smoke (3D)
Single source smoke
. 64° 25.43 23.66
with obstacles (3D)
Rotating cup (2D) 64 0.59 0.41
Rotating and
. 64 0.84 0.52
moving cup (2D)
Rising smoke (2D) 64 0.56 0.66
Rising smoke (2D) 128° 0.92 1.02
Single source
647 0.66 0.43
smoke (2D)
Single source
128 1.06 0.89
smoke (2D)
Single source smoke
. 647 0.65 0.43
with obstacles (2D)
Single source smoke
. 128 1.03 0.81
with obstacles (2D)

4.3 Limitations

While our model shows outstanding
performance on long-term motion prediction of
physical field evolution, there are still several aspects
that can be improved by follow-up works. Firstly, our
model concentrates on the prediction of macroscopic
distributions in physical fields in the sacrifice of
parts of details. As a result, detail loss becomes more

serious and leads to blurred visual effects as the data
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resolution increases. Therefore, it will be meaningful
to combine our model with some mature detail
enhancement methods to achieve better visualization
results. Secondly, we find it difficult for the proposed
model to realize motion prediction for complex 3D
datasets in our experiments. We believe that with
appropriate modifications, our model can reach better

performance on more complex 3D datasets.
5 Conclusion

In this paper, we propose a learning-based
algorithm focusing on matching macroscopic
distributions of the network-predicted physical fields
with the simulated data based on the Navier-Stokes
equation. Instead of replacing specific steps in
traditional fluid simulation, our algorithm predicts
density and velocity fields based on an initial frame
of density fields and a sequence of previous velocity
fields. Our model consists of two functional sub-
networks that can predict density fields and velocity
fields separately. The whole model reasonably
combines the two fields to achieve long-term
velocity and density field prediction. The proposed
end-to-end high-performance network architectures
can yield significant simulation performance
increments. Through detailed evaluations with a
series of 2D and 3D simulation datasets, we
demonstrate remarkable improvements in predicting
velocity and density fields provided by our approach
compared with previous works.

In conclusion, we obtain an end-to-end high-
performance model that significantly improves
accuracy and efficiency for long-term motion
prediction of physical flow field evolution. Our work
can be applied to rapidly generate virtual scenes and

animations. Besides, it is also applicable to generate

simulation data in addition to limited real data for
data-efficient tasks.

As for future work, it will be reasonable to take
advantage of information from pressure fields to
control and improve temporal evolution reality since
our model is only based on density and velocity
fields of fluid flows. Moreover, transfer learning
methods could be applied to our model to increase its
extensibility on all kinds of simulation scenes. Our
approach can be applied to accelerate existing

simulation methods as well.
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