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Abstract: Aiming to reduce the impact of dynamic environments on simultaneous localization and 

mapping (SLAM) of mobile robots, an adaptive optimization method in a feature-based visual odometry 

is proposed. The method helps to improve the invariance of image feature in illumination changing 

situation and to extract features effectively in areas where the texture information is not sufficient to make 

contributions to feature matching. Meanwhile, down sampling is applied to establish image pyramids and 

each scaled image is divided into cells based on a defined rule. Illumination adaptive nonlinear 

adjustments for each cell are applied to increase the image details, and low-texture area is removed by 

computing the image gray level probability distribution. Based on the proposed method, a visual 

odometry of SLAM system is built and verified on TUM dataset. The results show that, compared with 

the original system, the proposed method can reduce the trajectory errors of a mobile robot and also 

improve the performance of robot visual odometry in the unstable dynamic environments. 
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特征点法 SLAM 视觉里程计自适应优化算法 

于雅楠，史敦煌，华春杰 

(天津职业技术师范大学 信息技术工程学院，天津 300222) 

摘要：为减少动态环境对移动机器人同时定位与地图构建(simultaneous localization and mapping, 

SLAM)的影响，提出了一种特征点法视觉里程计自适应优化算法。该算法有助于改善光照条件变化

情况下图像特征的不变性，有效提取纹理信息不充分区域的特征用于图像匹配。采用降采样法建立

图像金字塔，将每个缩放后的图像根据预先设定规则划分为多个图像块。在每个图像块上进行光照

非线性调整来增加图像细节，通过计算图像灰度概率分布来剔除无纹理区域。基于提出的方法建立

了 SLAM 系统视觉里程计，并在 TUM 数据集上进行了验证。结果表明：该算法可以减小移动机器

人运动轨迹误差，改善机器人在不稳定动态环境下视觉里程计的性能。 

关键词：移动机器人；视觉里程计；SLAM；特征点法；弱纹理区域 
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Introduction 

SLAM (simultaneous localization and mapping) 

technology helps mobile robots to confirm positions 

and construct a surrounding map through continuous 

observations in unstructured environments, 

particularly the GPS-denied environments. SLAM 

provides necessary support for the robot's 

autonomous navigation, positioning, path planning 
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and obstacle avoidance. Its application has been 

extended to various fields such as drones, unmanned 

boat, driverless cars, virtual reality and augmented 

reality[1-3]. According to the different types of sensors 

of the input channel of a robot, SLAM technology is 

usually divided into laser-based SLAM and visual 

SLAM. The former provides users with a range of 

two or three-dimensional measurement, while the 

latter provides more abundant image data to assist 

robots to complete the tasks of scene recognition and 

semantic perception. 

In visual SLAM, in addition to the traditional 

monocular and binocular cameras for capturing RGB 

images, the depth-sensing devices such as Kinect, 

RealSense and Xtion provide the data with both color 

and depth information (RGBD data). Depth-sensing 

cameras measure a distance mainly based on two 

principles of structured light and TOF (time of flight). 

Structured-light sensor relies on laser speckle images 

to compute the object's three-dimensional shape, and 

TOF sensor resolves the target object distance by 

calculating the time difference or the light phase shift 

between the emission and the reflection. With the 

help of the depth information, it is convenient to 

achieve the three-dimensional scene reconstruction 

and recover three-dimensional structure of objects or 

their three-dimensional motion. At present, the 

depth-sensing cameras have some performance 

limitations, but, compared to the scale uncertainty of 

the monocular camera and computing resource 

demands of the binocular camera, their advantages 

and potential values in SLAM are obvious. 

Indirect method and direct method are two 

approaches of the state-of-the-art visual odometry. 

Their main difference is that the traditional indirect 

method optimizes the reprojection error of features 

extracted from two images to estimate a camera pose 

while the direct method optimizes photometric error 

of two images and uses whole pixel information 

directly for the estimate. In the direct method, despite 

the image information being heavily depended to 

maximize the utilization, an assumption of unchanged 

pixel gray value for the same space point measured 

under different angles of view is adopted. When an 

application is in diffuse reflection, shading, light 

changes or other special environments, the direct 

method using the corresponding pixel as the objective 

optimization is not established. In addition to the 

above discussion, the environmental requirement in 

the application is also a research challenge of SLAM. 

The system might be fragile in dynamic environments, 

which is not only because of the moving of obstacles, 

elements and people, but also the environmental 

change such as the illumination and texture 

information[4-5]. Robustness, drift as well as the 

latency in a SLAM system for a long time and 

large-scale real-time application is highly demanded, 

especially[6]. 

In this paper, in indirect visual odometry, an 

illumination adaptive method is proposed to increase 

the image details and enhance the contrast of 

brightness. In order to improve the image feature 

extraction ability, Gamma nonlinear adjustment is 

adopted in different regions of input image.  

1  Related Works 

In this section, the developments and existing 

works on visual SLAM is reviewed, and the 

calculation basis of robot’s position and orientation in 

visual SLAM is introduced. Finally, based on the 

problem in practical application, the optimization 

method is proposed.
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1.1 SLAM Framework 

SLAM refers to an overall framework of robots’ 

localization and map construction. With RGBD data 

obtained by depth-sensing cameras, such as Kinect, a 

complete visual SLAM system includes four major 

parts: visual odometry, back-end optimization, loop 

detection, and map construction. Up to the present, 

there are many excellent and mature visual SLAM 

systems. Mono-SLAM[7] developed by Davison et al 

is a successful implementation of the visual system, 

by which 3D trajectory of a monocular camera is 

recovered in real-time. Klein et al built a unique 

innovation named PTAM(Parallel Tracking And 

Mapping)[8], a SLAM framework with parallel 

threads in tracking and mapping. Algorithms of 

feature analysis and pose tracking using key frames 

are introduced to make a major breakthrough in 

real-time and stability. In addition, the RGB-D 

SLAM[9] system provided by Endres et al and the 

ORB-SLAM[10] open source developed by Mur-Artal 

et al are both excellent extension of PTAM. Among 

them, ORB-SLAM2[11] completes image sequence 

matching and tracking based on ORB features[12], 

even in loop detection and relocalization, and also 

provides interface for implementation in monocular, 

binocular, RGBD, and robot operating systems (ROS). 

Due to a sparse point clouds built in ORB-SLAM2, 

obstacle avoidance and navigation in practical tasks 

could not be used directly. Based on this system, Lv 

et al used octree structure and spatial prediction to 

extend an intensive 3D map[13]. Elvira et al proposed 

ORBSLAM-Atlas to deal with dynamic scenes. It 

brings the wide-baseline matching detection and 

exploitation to the multiple map domains with 

general and robust result[14]. 

Different from the indirect method which is 

based on sparse features, Newcombe et al proposed 

DTAM(Dense Tracking and Mapping in 

Real-Time)[15]. DTAM maximally utilizes the whole 

information of image with fewer features and build an 

intensive map. In order to reduce the computational 

cost in dense SLAM and to improve the system 

stability, as a representative of semi-dense types, 

LSD-SLAM[16] and DSO visual odometry[17] were 

released by Engel. They only focus on estimation by 

high gradient pixels and rich texture areas to deal 

with the system performance of robot localization and 

dense map creation in a large-scale space. 

SVO-SLAM[18] developed by Forster et al used a 

sparse image alignment algorithm, which was 

combined with feature correspondence and 

photometric error minimization. SVO-SLAM is a 

novel semi-direct visual odometry that faster and 

more accurate than others. Zubizarreta et al presented 

Direct Sparse Mapping, a full direct monocular visual 

SLAM based on photometric bundle adjustment[19]. 

This method reduces both estimated trajectory and 

map error at the same time to handle reobservations. 

1.2 Visual Odometry 

Visual odometry is for calculating the position 

and orientation of the robot by analyzing any two 

images and determining a global pose through all 

transformations. Image alignment is usually 

accomplished by geometric consistency and 

photometric consistency. Geometric consistency is to 

minimize geometric reprojection error of features 

coordinates in the indirect method, and photometric 

consistency is to minimize photometric reprojection 

error of pixel intensity in the direct method. The 

principle is shown in Fig. 1~2. 

3
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Fig. 1  Feature-based geometric reprojection diagram 

 

Fig. 2  Pixel-based photometric reprojection diagram 

In Fig. 1, feature points u1, u2, ... , un and 1u , 

2u , ... nu  are extracted from adjacent images Ik and 

Ik+1 respectively. Feature correspondences are 

determined through a descriptor matching between 

two image projection coordinates such as ui and iu , 

both of which are the projection of the same space 

point pi in a camera coordinate system. If the 

transformation matrix of the two images is Tk+1, k then  

1,i k k iu u  T  (1) 

However, Tk+1, k is an estimated value, the 

reprojection error minimization is constructed as the 

objective optimization: 

2
1, 1,

1

arg min
n

k k i k k i
i

||u u || 


  T T  (2) 

Where n presents the number of image features 

that participate in the optimization. 

In Fig. 2, the gray value of any pixel ui in Ik is 

presented as Ik(ui), and its space projection coordinate 

in the camera system is pi. If the transformation 

matrix of two images is Tk+1, k, the reprojection 

coordinate of pi in Tk+1 is iu  and its gray value is 

presented as 1( )k iI u  . In the condition that the pixel 

gray value of the same space point measured under 

different view angles is invariant, then 

1( ) ( )k i k iI u = I u   (3) 

If equation (3) is not satisfied, that means the 

estimation of Tk+1, k is not accurate, and the 

photometric error minimization is constructed as the 

objective optimization to calculate the optimal 

transformation matrix: 

2
1, 1 1,

1

arg min ( ) ( )
n

k k k i k k k i
i

= || I u I u ||  


 T T  (4) 

where n presents the number of image pixels that 

participate in the optimization. 

1.3 Visual Odometry Optimization 

Due to the strong assumption in the direct method, 

algorithms of visual odometry have lower tolerance to 

shadows, poor illumination conditions, and exposure 

parameters changing. On contrast, the indirect method 

has certain tolerance for illumination, but the 

performance of sensor is differently influenced by light 

intensity. For the same scene, according with 

illumination condition, the ability of feature extraction 

is fixed, which may affect the performance of feature 

detection algorithm. As shown in Fig. 3, compared to 

the original image (original), feature points extracted 

from highlighting image (highlighting) and darkening 

image (darkening) are discrepant, and the details of 

different local areas are more visible even in the area 

with low and high brightness. 

Instead of the standardized pre-processing for 

image sequences, this paper proposes an illumination 

adaptive method in visual odometry. In the available 

literature, Gamma correction is usually used to 

modify the whole image, which cannot be called an 

adaptive adjustment method. However, in the paper, 

Gamma correction is adopted for different regions in 

image pyramids to complete the nonlinear adjustment. 

This way, in which the process reduces the local 

shadow caused by light changes, enhances the 

4
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contrast of brightness, increases the image details, 

and benefits the noise suppression. In addition, in 

order to improve efficiency for feature extraction and 

descriptor calculation, a gray level probability 

distribution is used to remove low-texture regions and 

even the area of no obvious gradient. On the basis of 

the proposed method, features with scale invariance 

and rotation invariance are extracted from image and 

are matched among frames to estimate motion and 

generate the trajectories of the camera/robot. 

   

(a) highlighting                (b) original 

 

(c) darkening 

Fig. 3  Feature comparation before and after illumination 
adjustment 

2  System Development and Analysis 

2.1 System Framework 

System framework of the proposed illumination 

adaptive method in visual odometry is shown in   

Fig. 4. In the algorithm, the part of adaptive sparse 

feature extraction is used to improve the systematic 

performance of visual odometry. 

 

Fig. 4  Illumination adaptive visual odometry system 

Adaptive sparse feature extraction algorithm is 

explained as follows. Firstly, before establishing a n 

level image pyramids, each frame in input sequences 

is converted to grayscale for better subsequent 

processing. Then, on each level of pyramids, the 

whole image is divided into grid cells with exactly 

the same size c. For each cell, change in illumination 

is computed and adjusted adaptively and nonlinearly 

by equation G(x, y). Local illumination correction 

here could enhance the contrast of the region, 

increase the image details and suppress the noise 

interference. In order to reduce sub-regions with very 

poor texture, low-texture area is removed by 

analyzing the gray level probability density 

distribution. The removal of low-texture area could 

improve the efficiency for feature extraction without 

performance loss. FAST corners are extracted on 

retained cells. The corner coordinates extracted from 

each pyramid level are restored to the original image 

according to the scale factor. The key points are 

allocated and managed by quadtree, and the strongest 

corner is selected as the feature of the node according 

to the pre-set threshold to achieve the uniform 

distribution of image features. After corners 

screening, finally, orientation and descriptor for each 

feature are calculated and output. 

2.2 Illumination Adaptive Model 

A generic illumination correction function for 

image processing is given: 

( , ) ( ( , ) 255) 255yG x y  = I x y /   (5) 

Where, I(x, y) is the gray value of a pixel (x, y); G(x, 

y) is the corrected gray value of the pixel (x, y); γ is a 

correction parameter. As shown in Fig. 5, the original 

image without adjustment is on red line. It can be 

5
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brightened when γ is less than 1, such like the image 

on green line with Gamma 0.25 and the image on 

blue line with Gamma 0.5. On contrast, the same 

image can be darkened when γ is more than 1, such 

like the image on dark line with Gamma 2 and the 

image on purple line with Gamma 5. 

 

Fig. 5  Nonlinear adjustment under different parameters 

In order to adjust different regions in image, 

here γ is determined upon the mean gray value of 

each cell adaptively:  
1

mean
lg lg

255

 -
I

γ =    /   μ 
  

 (6) 

In equation (6), μ is the grayscale correction 

threshold with the range (0, 1). In this paper, 0.5 is 

used as the value of empirical parameter μ. In 

addition, except the impractical pure black or pure 

white in actual application, Imean cannot be 0 or 255 to 

contradict the definition of logarithmic computation.  

On each level of image pyramids, in order to 

improve the efficiency for extracting corners, a pixel 

gray level probability density distribution of grid cell 

is established. rk is the gray value corresponding to 

the peak value. If the pixel number nk in the interval 

[rk–m, rk+m] around rk is more than a certain 

proportion p of the total pixel number N, this region 

of image is considered as the area with low-texture or 

no obvious gradient. So that it can be removed due to 

less contribution to corner extraction. Here, threshold 

m and p are both empirical values. 

3  Experimental Results 

An experimental validation is provided to the 

proposed method. In the experiment, datasets 

containing kinect RGB-D data and ground-truth are 

provided by the computer vision group from TUM[20]. 

The system adopts ubuntu 16.04 and the reading 

speed for the image sequence is set to 30 fps. All 

testing is completed on desktop (Intel CoreTM i5-3470 

CPU@3.20 GHz×4, 15.6 GiB memory). When 

running the algorithms of visual odometry, the 

back-end of the system adopts g2o to optimize a pose 

graph and generate a motion trajectory of the camera. 

For evaluation of the proposed method, three datasets 

are selected as benchmarks and compare results with 

an open-source SLAM system ORB-SLAM2. 

In the experiment, three video sequences from a 

hand-held camera that fr1/floor, fr1/desk and 

fr1/room are used. All of those are sequences with 

several loop closures in the same office scene. The 

fr1/floor sequence contains a camera sweep over the 

wooden floor, the fr1/room sequence cover the whole 

room with slow motion and the fr1/desk sequence 

cover two tables with higher motion. The motion 

trajectory of the optimized system is constructed and 

its accuracy is compared with that generated by 

ORB-SLAM2. Compared with the benchmark, the 

constructed trajectories on fr1/room are shown in Fig. 

6. From Fig. 6(a) and Fig. 6(b), it can be seen that the 

estimation result from the proposed system is better 

than ORB-SLAM2 especially during the sharp turn at 

the bottom. 

6
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(a) ORB-SLAM2 trajectory 

 

(b) Trajectory from the proposed method 

Fig. 6  fr1/room: Comparison of constructed trajectories with 
the benchmark result 

3.1 Absolute Trajectory Error 

The root mean square error (rmse) of absolute 

trajectory errors (ate) is used as a measure to evaluate 

the accuracy of the trajectory estimation. It is defined 

as: 

2
, ,

1

( )

( )

n

e i s i
i

|| x x ||

RMSE x  =
n




 (7) 

where, xe,i represents the estimated location of frame i 

in the image sequence and xs,i represents the standard 

location (ground truth) of the same frame. 

The evaluation result is given in Table 1. Both of 

the tracking time and ate.rmse values in table is the 

average of 10 tests. Since the illumination correction 

process is added in the proposed method, the mean 

tracking time for each frame is nearly doubled, but 

the tracking accuracy is obviously increased compared 

to that from ORB-SLAM2. The relative improvement 

of tracking accuracy is also listed in last column.  

3.2 Tracking Lost Improvement 

On some occasions, odometry tracking tends to 

get lost and the current camera could not be found by 

a system if there is a fast moving or big rotation. In 

this situation, there are no sufficient key points 

visible to match frames and then to construct a map. 

When running dataset fr1/room, the odometry loses 

tracking at frame 845 occasionally. This frame and its 

two adjacent images are shown in Fig. 7. There is a 

white cabinet with low texture in the frame and it is 

easy to lose camera locations under fast moving 

because of the insufficient corresponding features. 

This situation also happens in another dataset 

fr1/desk. Although the relocalization module can 

recover the camera pose after a period and continue 

tracking operation when a cloud map has been 

previously obtained, the system doesn’t have enough 

information to estimate the camera’s position and 

pose correctly when frames are lost. It is interesting 

that the proposed method can track these frames 

correctly. This is because of the adaptive illumination 

correction improving the feature extraction. Details of 

image regions are enhanced and made available to the 

points on image gradients such as corners and edges. 

The performance improvement is shown in Fig. 8. 
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Table 1  Evaluation results 

ORB-SLAM2 optimized system 

dataset t/s ate.rmse/m t /s ate.rmse/m Improvement/% 

fr1/room 0.035 955 0.057 292 0.064 367 0.048 388 15.54 

fr1/floor 0.028 165 0.015 982 0.055 230 0.014 204 11.13 

fr1/desk 0.036 486 0.018 198 0.070 435 0.015 475 14.96 
 

           

(a) previous frame                     (b) frame 845                     (c) next frame 

Fig. 7  Frames of fr1/room, which is easy to get lost in visual odometry 

 

(a) ORB-SLAM2 trajectory 

 

(b) Trajectory from the proposed method 

Fig. 8  fr1/desk: Comparison of constructed trajectories with 
the benchmark result 

4  Conclusions 

In this paper, an adaptive optimization method 

based on the indirect method of visual odometry is 

proposed to add illumination invariance to the sparse 

features extracted from dynamic environments. It 

improves the performance of the feature-based visual 

odometry. The optimized system is evaluated on 

TUM kinect datasets with ground-truths fr1/room, 

fr1/floor and fr1/desk. The test results have shown the 

following advantages of the proposed method 

compared to original SLAM system: ①  The 

proposed method improves the trajectory accuracy. 

Compared to ORB-SLAM2, optimized algorithm 

combined with low-texture remove process relatively 

reduces the absolute trajectory error with 15.54%, 

11.13% and 14.96% respectively; ② The proposed 

method improves the system robustness. More local 

details of different image area effectively avoid the 

tracking lost under camera fast moving and large 

rotation. At present, however, there is performance 

improvement potential in next study. Because of the 

added illumination correction process, the 

computation cost is slightly high to extract feature 
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points and compute features descriptors in the 

indirect method, which may influence the system 

real-time performance. In addition, since the frame 

registration in the method is based on sparse features 

extracted from relevant images, tracking lost may 

happen in image areas where the texture information 

is not sufficient to generate features. 
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