Journal of System Simulation

Volume 33 | Issue 9

Article 10

9-17-2021

Optimization Algorithm of Mine Ventilation Based on SA-IPSO

Liangshan Shao

1. Liaoning Technical University Institute of Systems Engineering, Huludao 125105, China; ;2. School of Software, Liaoning Technical University, Huludao, 125105, China;

Wang Zhen

1. Liaoning Technical University Institute of Systems Engineering, Huludao 125105, China; ;2. School of Software, Liaoning Technical University, Huludao, 125105, China;

Changming Li

1. Liaoning Technical University Institute of Systems Engineering, Huludao 125105, China; ;2. School of Software, Liaoning Technical University, Huludao, 125105, China;

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation.

Optimization Algorithm of Mine Ventilation Based on SA-IPSO

Abstract

Abstract: A non-linear optimization mathematical model aiming at the minimum total power of the mine ventilation network is established, in which SA-IPSO algorithm is applied for the optimization. *The mutation operation is introduced in the PSO algorithm, in which a new inertia weight is proposed and a new particle selection method is constructed to control the number of particles violating the constraints, and the ability of the PSO algorithm to find boundaries is improved. The constraint conditions of the mine ventilation law are transformed into the penalty term of the objective function. IPSO optimizes the objective function and uses SA to achieve the global optimum. The simulation experiment of Xintun Mine shows that the algorithm can reduce the total energy consumption of ventilation by 95.69Kw while the air volume can meet the demand.*

Keywords

mutation operation, inertia weight, constraint problem, improved particle swarm, penalty term, simulated annealing

Recommended Citation

Shao Liangshan, Wang Zhen, Li Changming. Optimization Algorithm of Mine Ventilation Based on SA-IPSO[J]. Journal of System Simulation, 2021, 33(9): 2085-2094.

第 33 卷第 9 期	系统仿真学报©	Vol. 33 No. 9
2021年9月	Journal of System Simulation	Sep. 2021

基于模拟退火与改进粒子群的矿井通风优化算法

邵良杉^{1,2}, 王振^{1,2}, 李昌明^{1,2}

(1. 辽宁工程技术大学 系统工程研究所, 辽宁 葫芦岛 125105; 2. 辽宁工程技术大学 软件学院, 辽宁 葫芦岛 125105)

摘要:建立以矿井通风网络总功率最小为目标的非线性优化数学模型,改进粒子群优化算法实现寻 优。在粒子群算法中引入变异操作,提出了一种新的惯性权重,并构造一种新的粒子选择方法控制 违反约束条件的粒子数量,提高粒子群算法寻找边界的能力。将风量平衡定律和风压平衡定律的约 束条件转化为目标函数的惩罚项,改进粒子群(Improved Particle Swarm Optimization, IPSO)对目标函 数进行优化,利用模拟退火在搜索过程中引入随机因素达到全局最优。对新电矿系统进行仿真模拟 实验,结果表明:该算法能够降低通风总能耗的95.69 kW,且风量值满足用风需求。 关键词:变异操作;惯性权重;约束问题;改进粒子群;惩罚项;模拟退火

入证问: 文升禄IF, 顶柱状主, 万米门达, 队过松子科, 芯竹火, 快振达八

中图分类号: TP391; X936 文献标志码: A 文章编号: 1004-731X (2021) 09-2085-10 DOI: 10.16182/j.issn1004731x.joss.20-0403

Optimization Algorithm of Mine Ventilation Based on SA-IPSO

Shao Liangshan^{1,2}, Wang Zhen^{1,2}, Li Changming^{1,2}

Liaoning Technical University Institute of Systems Engineering, Huludao 125105, China;
 School of Software, Liaoning Technical University, Huludao, 125105, China)

Abstract: A non-linear optimization mathematical model aiming at the minimum total power of the mine ventilation network is established, in which SA-IPSO algorithm is applied for the optimization. *The mutation operation is introduced in the PSO algorithm, in which a new inertia weight is proposed and a new particle selection method is constructed to control the number of particles violating the constraints, and the ability of the PSO algorithm to find boundaries is improved. The constraint conditions of the mine ventilation law are transformed into the penalty term of the objective function. IPSO optimizes the objective function and uses SA to achieve the global optimum. The simulation experiment of Xintun Mine shows that the algorithm can reduce the total energy consumption of ventilation by 95.69Kw while the air volume can meet the demand.*

Keywords: mutation operation; inertia weight; constraint problem; improved particle swarm; penalty term; simulated annealing

引言

矿井通风系统是矿井的"血脉",每一条通风巷 道犹如人体中的每一条血管,不断地将新鲜空气输 送到巷道中,并把巷道中的废气、有毒气体等排出。 通风系统若出现问题将会引起巷道中风流的不稳 定、用风区的用风量不足、对瓦斯稀释不够等安全 问题,从而引起煤矿安全灾难。随着国家工业信息 化、智能化的快速发展,智能矿井通风成了煤矿发 展的必然趋势,建立一个稳定的、可靠的矿井通风 系统是发展大背景下的前提^[1-3]。矿井通风网络是 一个关联度极高的复杂网络,一条分支风量的改变 就会影响其他分支风量,所以满足风量需求的调风 方案并不唯一。如何确定一种能满足生产、安全需

收稿日期: 2020-06-23 修回日期: 2020-08-24

基金项目: 国家自然科学基金(71771111)

第一作者: 邵良杉(1961-), 男, 博士, 博士生导师, 教授, 研究方向为矿业系统工程。E-mail: Intushao@163.com

第33卷第9期	系统仿真学报	Vol. 33 No. 9
2021年9月	Journal of System Simulation	Sep. 2021

求且通风运行成本最低的分风方案是矿井通风安 全技术的基本问题。

国内外学者应用多种智能算法来探讨矿井通 风优化问题,苏义鑫等^[4]采用改进遗传算法对网络 最优权值和阈值进行全局搜素,并用 BP 算法进行 局部寻优最终得到风速预测值; 郭一楠等^[5]在粒子 群算法中引入文化算法的双层进化机制,通过学习 最优粒子对自身速度与位置进行更新; 厍向阳等[6-7] 在通风理论与图论的基础上引入遗传算法随机产 生动态邻接矩阵与余树弦风量值,通过约束条件对 分风和调风进行评价;张兴国等^[8]采用自适应混沌 粒子群优化算法对目标函数进行优化,当风网解算 陷入局部最优时借助混沌搜索引导粒子重新进行 搜索;吴新忠等^[9-10]在烟花算法中加入精英反向学 习策略,加强了算法在空间邻域中的搜索,从而提 高全局搜索能力。在复杂的矿井通风系统中,遗传 算法容易陷入局部最优, BP 网络需要对采集风量 值进行训练,采集风量值受多方面因素影响,较易 造成预测误差,而文化粒子群算法受上层信度空间 的影响,提取和更新困难,反向烟花算法受学习策 略影响,实现过程较复杂。

在矿井通风调节中应使用"安全、经济、可行" 的控风方案。安全性及可行性在风量及风压的上下 限中反映;目标函数一般从经济方面进行考虑,即 通风费用最低,在通风费用中风机能耗所占的比重 高,通常以风机功率作为目标函数^[11]。

将粒子群优化算法引入解决上述优化问题。 粒子群优化算法具有结构简单、参数少及收敛速 度快的特点。但是,粒子群优化算法中粒子容易 产生早熟现象,使得巷道风量陷入局部风量值最 优,后期在巷道中搜索时精度变差。因此,通过 对粒子群惯性权重的改进及更新策略和约束条件 的限制,在此基础上引入模拟退火的随机因素解 决矿井通风优化问题。该算法通过简单编码寻找 阈值以及跳出局部最优,不必对数据集进行训练, 在所有巷道的阈值中进行全局搜索,可快速地找 到最佳的分风方案。

1 矿井通风网络建模

1.1 通风三大定律

矿井通风网络解算要遵守通风三大定律,共同 约束通风网络优化问题。

(1) 风量平衡定律: 在某一节点的流入风量等 于流出风量。

$$\sum_{j=1}^{N_i} a_{ij} Q_j = 0, \quad i = 1, 2, \cdots, J$$
 (1)

式中: *N_i* 为以节点*i* 为端点的巷道的分支数; *Q_j* 为 分支 *j* 的风量; *J* 为该通风网络的节点数。

$$a_{ij} = \begin{cases} 1, heta
otin
otin$$

(2) 通风阻力定律: 阻力定律遵守平方关系: $H_i = R_i Q_i | Q_i | -F_i (Q_i) - P_i$ (3)

式中: H_j 为第 j条风路的风压或阻力; R_j 为第 j条 风路的风阻; Q_j 为第 j条风路的风量; $F_j(Q_j)$ 为 风机风压分支, $F_j(Q_j) = c_1Q_j^2 + c_2Q_j + c_3$, c_1, c_2, c_3 分 别为风机曲线拟合系数; P_i 为回路 j的自然风压。

(3) 风压平衡定律:闭合回路顺时针风压等于 逆时针风压, *M* = *N* - *J* +1个独立回路,则可列 *M* = *N* - *J* +1个风压平衡方程,*N* 为分支数,*J* 为 节点数:

$$f_j = \sum_{i=1}^n b_{ij} (H_j - P_j - F_j(Q_j)) = 0$$
(4)

式中: f_j 为沿回路 j的阻力或风压的代数和, $i = 1, 2, \dots, N - M + 1$ 。

 $b_{ij} = \begin{cases} 1, j 分支包括在$ *i* $回路中并与回路同向 \\ -1, j 分支包括在$ *i*回路中并与回路反向 (5)0, j 分支不包括在*i*回路中

1.2 优化模型

选择合理的风机工况点在经济上要求通风机 的静压效率不低于 70%,即η≥70%;安全上要求 避免风机发生喘振,规定风机的实际工作风压不得 高于额定风压的 90%,即FH ≤0.9FH_{max};且分支 *j*的风量、风压满足 $Q_{\min} \leq Q_j \leq Q_{\max}, H_{\min} \leq H \leq H_{\max}$,其中 $Q_{\min}, Q_{\max}, H_{\min}, H_{\max}$ 分别为巷道 中风量、风压的上下限。目标函数记为

$$W_{\min} = f_{\min}(FH, FQ) + P(\sigma_k, x) = \sum_{N \in NF} FH_j \cdot FQ_j + P(\sigma_k, x)$$
(6)

式中: *NF* 为通风机的数量; *FQ_j* 为分支 *j* 的通风 机风量; $P(\sigma_k, x)$ 为惩罚函数; σ_k 为惩罚因子。可 根据实际生产情况获得惩罚因子 σ_k 的特定有限 值,能有效地解决内、外罚函数问题。目标函数为

$$W_{\min} = f_{\min}(FH, FQ) + \sigma_k \left\{ \sum_{i=1}^{j} FH_i^2 + \sum_{i=1}^{j} FQ_i^2 \right\}$$
(7)

2 IPSO 优化及 SA 算法

2.1 改进惯性权重值及速度、位置更新

粒子群算法(PSO)^[14-15]随机产生一组粒子 m 组 成种群 $Z = \{Z_1, Z_2, ..., Z_m\}$,每个粒子所处的位置 $z_i = \{z_{i1}, z_{i2}, ..., z_m\}$ 表示问题的一个解,并且根据目 标函数来计算每个粒子的适应度值。每个粒子在解 空间中迭代,调整其位置以寻求新解,且都有一个 速度 $v_i = \{v_{i1}, v_{i2}, ..., v_m\}$,在每一次迭代中,粒子通 过跟踪个体最优解 p_i 和种群最优解 g_i 来更新自身:

$$v_{i}(t+1) = \omega(t)v_{i}(t) + \eta_{1}r_{1}[p_{i}(t) - z_{i}(t)] + \eta_{2}r_{2}[g_{i}(t) - z_{i}(t)]$$
(8)

$$z_i(t+1) = z_i(t) + v_i(t+1)$$
(9)

式中: *t* 为迭代次数; *v_i*(*t*+1) 为第*i* 个粒子在*t*+1次 迭代中的速度; *ω*(*t*) 为惯性权重; η₁, η₂ 为学习 因子; η, η₂ 为 0~1 之间的随机数。算法的收敛和 开拓能力通过ω控制。较大的ω可以提高粒子的全 局搜索能力; 而较小的ω可以加速粒子局部收敛, 有利于算法收敛性的控制^[12-15]。因此,应将较大的 ω在早期迭代中选择,作为迭代持续增加,ω应减 小。本文采用的改进 PSO 算法可描述为

$$\begin{cases} \omega(t) = (\omega_{\max} - \omega_{\min})(t_{\max} - t) / t_{\max} + \\ \omega_{\min} + \gamma \cos(t\pi / T) & (10) \\ \omega(t) = \max\{\omega_{\min}, \min\{\omega_{\max}, \overline{\omega}(t)\}\} \end{cases}$$

当 t 较小时, $\omega(t)$ 接近于 ω_{\max} , 使得算法拥有

全局搜索能力;随着 t 的增大, @ 非线性递减,使 得 PSO 能够进行局部搜索,从而使 IPSO 算法在全 局搜索与局部搜索能力之间找到最佳平衡点, 7 为 @ 的波动程度, T 可以改变@ 的波动周期,即非线 性递减权重 PSO 算法(IPSO)。

文献[16]建议将统一因素整合到 PSO 中,以平 衡认知和群体的影响,由此产生的统一粒子群将粒 子移向其个体和种群最佳的中心,这在 PSO 上有 所改进,后者将粒子移到中心之外。粒子的速度和 位置由式(11),(12)确定:

 $\boldsymbol{v}_i(t+1) = \boldsymbol{\omega}(t)\boldsymbol{v}_i(t) + \eta_1 \boldsymbol{r}_1 \otimes \boldsymbol{p}_i(t) - \boldsymbol{z}_i(t)] \otimes$

$$[\mathbf{r}_3 + \eta_2 \mathbf{r}_2 \otimes [g_i(t) - \mathbf{z}_i(t)] \otimes (1 - \mathbf{r}_3)$$
(11)

$$z_i(t+1) = z_i(t) + v_i(t+1)$$
(12)

当 r_1 , r_2 , r_3 是每个分量为[0, 1]之间的均匀分 布的随机数的 n 维向量,并且 \otimes 定义为 $(a_1, a_2, \dots, a_n) \otimes (b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$ 。

2.2 粒子更新策略

文献[17]对个体和局部极值提出了更新策略, 能够使不可行域中的粒子快速移动至可行域。更新 策略可以详细描述如下:

(1) 确定的违反约束公差 ζ(t):

$$\zeta(t) = \begin{cases} \zeta_0 (1 - t / t_{\zeta}), & t < t_{\zeta} \\ 0, & t > t_{\zeta} \end{cases}$$
(13)

初始违反约束公差为 ζ_0 ,约束公差最大迭代 次数为 t_c 。

(2) 约束函数:
$$S(z) = \sum_{j=1}^{j} \max\{H_j(z), 0\} + \sum_{j=1}^{n} |f_j(z)|$$
(14)

式中: H_j(z)为粒子在 z 位置时 j 分支的通风阻力值。

(3) 当 $S(z_a(t)) \leq \zeta(t) \pm S(z_b(t)) \leq \zeta(t)$ 时,若 $f(z_a(t)) \leq f(z_b(t))$ 则 $(z_a(t))$ 更优,否则 $(z_b(t))$ 更优。

(4) 当 $S(z_a(t)) \leq \zeta(t)$ 且 $S(z_b(t)) > \zeta(t)$ 时, $(z_a(t))$ 更优。

(5) 当 $S(z_a(t)) > \zeta(t) 且 S(z_b(t)) > \zeta(t)$ 时,若 $S(z_a(t)) \leq S(z_b(t)), 则(z_a(t))$ 更优,否则($z_b(t)$)更优。

http://www.china-simulation.com

第 33 卷第 9 期	系统仿真学报	Vol. 33 No. 9
2021年9月	Journal of System Simulation	Sep. 2021

2.3 违反约束条件选择策略

当全局极值点到达可行域的临界值时,将增加 粒子跳出可行域的机率。因此,本文统计粒子更新 后违反约束的粒子数。当粒子数大于预定阈值时, 违反约束的粒子根据违反约束的程度进行排序,保 留部分违反限制较少的粒子并产生新粒子以保持 粒子数恒定。新的粒子生成规则由式(15)决定。

$$\begin{cases} z_{\text{new}}(t) = z_i(t) \\ v_{\text{new}}(t) = dv_i(t) \end{cases}$$
(15)

式中: *z_i(t*)为在不违反约束的粒子中随机选择的 粒子; *d*为进化系数。通过实验发现,当*d*值在[-1, 1]之间时,该算法的搜索效率较高。

2.4 SA 算法

模拟退火算法^[18-19]从初始设置的温度开始,在 问题解空间上生成一个初始状态作为初始解,对该 状态进行干扰,模拟粒子在一定温度下的移动状 态。评估扰动后产生的新解,对比新旧解,择优去 劣,根据 Metropolis 准则进行替换。SA 以概率 1 接受最优解,以某种概率接受差解,可以有效地跳 出局部最优。

Metropolis 准则定义了物体在某一温度T下从 状态*i*转移到状态*j*的内能概率为

$$\boldsymbol{p}_{ij}^{\mathrm{T}} = \begin{cases} 1, E(j) \leq E(i) \\ e^{-(\frac{E(j)-E(i)}{KT})} = e^{-(\frac{\Delta E}{KT})}, \text{ others} \end{cases}$$
(16)

式中: e为自然对数; E(i), E(j)分别为状态i, j下的内能; $\Delta E = E(j) - E(i)$,表示内能增量; K为波尔兹曼常数。当 $E(i) \leq E(j)$ 时,系统将会以 概率1接受新的状态,相反系统将会以一定概率接 受这个不好状态,有效避免算法陷入局部最优。

SA 算法具备跳出局部最优的能力,将其引入 IPSO 算法中,发现粒子在移动过程中,当粒子下 一代位置优于当前位置时,粒子移动到下一代的位 置,反之,当粒子当前位置优于下一代位置时,粒 子不会直接移动到下一代位置,而通过温度*T*来控 制这一概率,这样粒子就不会盲目移动至下一代位 置,而是以某种概率先试探再行动。当温度下降的 足够慢时,粒子不能轻易地跳出有希望的搜索区 域,极大地增强了粒子的局部搜索能力。

3 基于 SA-IPSO 算法的矿井通风优 化算法

单纯的PSO算法和SA算法都曾用在矿井通风 优化上,PSO 依赖矿井各巷道中风量之间的信息不 断更新粒子的位置和速度,使其不断向最优风量靠 拢。SA 算法有很强的全局搜索能力和较高的搜索 精度,同时也存在一些局限性:PSO 算法容易粒子 早熟,易使得巷道风量陷入局部风量值最优,后期 在巷道中搜索时精度变差,且收敛速度慢;而 SA 算法的精度和速度对初始温度的选择和降温的过 程有较强的依赖,收敛速度十分缓慢。该混合算法 以 IPSO 算法为主体,将 SA 算法镶嵌其中。主要 流程图如图 1 所示。

图 1 SA-IPSO 算法流程图 Fig. 1 Flow diagram of SA-IPSO algorithm

根据流程图, IPSO, SA 算法的具体步骤, 矿 并通风优化算法步骤如下:

step 1:初始化粒子群,包括种群的规模(N)、 每个粒子的位置(z_i)和速度(v_i),惯性权重(ω), 最大迭代次数(t),适应度(*Fit*[i])、学习因子 (η_1,η_2)等;

第 33	卷第	9	期
2021	年9	月	

step 2:随机产生规定规模粒子群,粒子群每 一个个体代表余树枝中待求风量初始值, p_i 放第i个粒子, g_i 放初始群体中最佳粒子;

step 3: 初始化模拟退火,设置初始温度,生成初始风量值*Q*,求评价函数*C*(*Q*),令*C*(*Q*)= g_i ;

step 4: 模拟退火温度降温,在当前解空间随 机扰动,产生新解即生成新的风量值Q';

step 5:利用更新策略从 p_i 得到最佳点 $p_i(t)$, 用更新策略比较 $p_i = g_i(t)$ 。如果 p_i 更好,则 $g_i(t) = p_i$; 否则 $g_i(t) = g_i(t-1)$ 。

step 6: 利用式(11), (12)更新例子速度和位置;

step 7: 通过回路矩阵及其相应的分支风量值, 按照通风阻力公式进行风量分配,计算风压值和风 量值;

step 8: 根据模拟退火对粒子群优化效果评价, 求得 $C(Q')=W_{min}$, $\Delta Q = C(Q') - C(Q)$, 若 $\Delta Q < 0$, C(Q) = C(Q'), Q = Q'并接受 Q' 更新的速度和位置 $T = a \cdot T$; 若 $exp(-\Delta C/T) > rand(0,1)$, C(Q) = C(Q'), Q = Q' 依然接受 Q' 更新的速度和位置 $T = a \cdot T$, 否 则拒绝 Q' 的值, Q 为当前时刻的值,并计算适应 度值;

step 9: 计算违反约束的粒子数,如果数量太大,则保留一些违反约束的粒子,并生成一些新粒子以保持粒子数符合式(15);

step 10: 判断是否满足结束条件,若满足输出 最优解 g_b ,输出分支风量调节值并计算最有目标 数值,算法结束,若不满足则t = t + 1进入 step 4。

结束条件:

(1) 迭代次数是否超过最大迭代次数;

(2) $|\Delta Q^{(t)}|$ 是否小于给定的迭代精度指标 E。

4 仿真研究与优化实例

在 Visual Studio2019 平台上利用 C#及 C++混 合编程,开发三维通风仿真与优化系统软件,应用 SA-IPSO 矿井通风优化算法,对冀中能源峰峰集团 新屯煤矿进行仿真模拟。通过对新屯通风系统进行 阻力测定,将测得数据及新屯矿通风系统图导入软 件中,对新屯矿通风系统风量分布进行计算机仿真 模拟,矿井通风系统图如图2所示。

(b) 立体图图 2 矿井通风系统图Fig. 2 Mine ventilation system plan

图 3 为新屯矿通风网络图,共有 134 个节点, 193 条分支,其中 184, 185, 191 为 3 个进风井分 支,1,113 为 2 个回风井分支,新屯矿为复杂混 合型通风网络结构。

根据开采计划,矿井中-190浅部煤柱工作面、 14 229 下放工作面、14 251 外煤柱工作面、14 284 下放工作面、14 271 里工作面、14 271 工作面以及 14 476 野青工作面的煤储量基本开采完毕,处于停 采阶段。-420车房煤柱工作面、新开14273工作面 进行采煤工作。由于停采工作面主要由中央轨道下 山、-50东大巷、皮带下山、轨道下山、集中皮带 机道、二部猴车、三部猴车、-190 南大巷、-600 轨道大巷等供风,西翼、北翼工作面全部的回风经 由-50 东副巷、-190 北大巷,到回风下山,最后由 总回风巷到厂区风井排出。因此当这些工作面停采 后, 厂区风井风机的回风压力很小, 相反开采的 2 个工作面的回风全部由一级、二级回风到东风井排 出,东风井风机工作压力大,而且3个进风井离2 个开采工作面特别远,风量浪费严重,所以要尽可 能将3个进风井的风量充分的用于工作面开采用风。

图 3 新屯矿通风网络图 Fig. 3 Ventilation network diagram of Xintun Mine

为了提高风量利用率,减小风机压力,使风量 在用风区达到最大利用价值。对-600 进风系统进 行优化。提出方案:将-600 运输上山段 E159 风量 设置为 1 m³/s,-600 轨道大巷段 E120 风量设置为 1.25 m³/s,在 E1,E113 分支设置固定风机风量, 分别为 45.27 m³/s,113.86 m³/s,用本程序求得按 需分风结果,查看矿井主要巷道通风情况。

其中 SA-IPSO 算法相关参数设定: PSO 种群 规模为 50,最大允许迭代次数为 500,学习因子 $\eta_1 = \eta_2 = 1.55$,波动周期*T* 设为 100,最大惯性权 值 $\omega_{max} = 0.9$,最小惯性权值 $\omega_{min} = 0.4$,最大限制 速度 $v_{max} = 2$,迭代次数为 500 次,初始违反约束 公差为 ζ_0 设为 0.25, 0.5, 0.75,约束公差最大迭 代次数为 t_{ζ} 为 250, 违反约束的粒子数为 65, 演 化系数d为–0.5; SA 参数设定:温度退火参数 K=0.65,开始温度为 10 000 ℃,选取优化式(7) 为算法的适应度函数。

新屯矿有厂区回风井线和东风井线 2 条风井 线,本文选取东风井线进行实验数据分析,在执行 优化方案前用程序解的自然分风结果,东风井线主 要通风网络参数如表1所示。

为了测试算法的有效性和优越性,将其与GA, PSO, IPSO 算法所得的通风网络优化结果进行比 对分析,GA 种群规模为50,交叉概率为0.7,变 异概率为0.3,最大迭代次数为500。具体优化结 果见表2。

Shao et al.: O	ptimization	Algorithm	of Mine	Ventilation	Based on S	SA-IPSO

第33卷第9期
2021年9月

邵良杉,等:基于模拟退火与改进粒子群的矿井通风优化算法

Vol. 33 No. 9 Sep. 2021

		表	〔1 东风井线部分巷道参	数 Company 11 Line					
	Tab. 1 Some tunnel parameters of Dongreng well line								
分支号	始节点	末节点	风阻/(Ns ² ·m ⁻⁸)	优化前风量/(m³·s-1)	是否可调				
E184	130	26	0.022	72.22	不可调				
E26	26	25	0.008	66.42	不可调				
E179	25	127	0.016	51.55	不可调				
E178	127	126	0.33	7.89	不可调				
E176	126	125	0.012	64.25	可调				
E175	125	124	0.017	50.22	可调				
E174	124	118	0.020	46.16	不可调				
E173	118	119	0.051	44.86	可调				
E172	119	117	0.262	14.23	可调				
E170	117	109	0.208	24.23	可调				
E159	109	107	0.195	19.42	可调				
E154	107	106	0.327	16.16	不可调				
E152	106	87	0.437	13.35	可调				
E123	87	86	0.361	13.24	可调				
E122	86	85	0.563	10.96	不可调				
E121	85	84	0.207	16.97	可调				
E120	84	83	0.245	20.04	可调				
E119	83	82	0.011	48.53	可调				
E117	82	80	0.032	75.06	不可调				
E114	80	79	0.005	64.19	不可调				
E113	79	133	0.007	131.86	不可调				

表 2 东风井线部分巷道优化结果

Tab. 2 Optimization results of some tunnels in Dongfeng well line								
公士旦	GA	算法	PS	O 算法	IPS	SO 算法	SA-IPSO 算法	
分文与	风量/($m^3 \cdot s^{-1}$)	压力调节量/Pa	风量/(m ³ ·s ⁻¹)压力调节量/Pa	风量/(m ³ ·s ⁻¹)压力调节量/Pa	风量/(m ³ ·s ⁻¹)	压力调节量/Pa
E184	71.56		71.39		72.73		70.46	
E26	66.05		65.26		66.73		66.42	
E179	50.25		51.33		50.71		49.34	
E178	8.23		7.20		6.98		7.51	
E176	63.43		65.72		62.51		62.67	
E175	51.24		45.21	70.73	49.35		48.21	
E174	46.35		48.24		47.38		45.23	
E173	45.24		45.17		39.27	2.86	47.43	
E172	12.75		14.51		14.67		15.21	
E170	9.35	70.57	25.36		24.11		24.73	
E159	19.32		20.36		4.85	72.84	4.27	135.96
E154	1.00		1.00		1.00		1.00	
E152	14.25		14.68		14.53		15.24	
E123	12.97		13.11		12.64		13.89	
E122	12.53		12.47		11.59		13.14	
E121	16.53		13.94	3.67	18.15		19.68	
E120	1.25	176.23	1.25		1.25		1.25	286.44
E119	45.38		26.31	230.57	25.61	222.93	48.32	
E117	76.87		74.58		75.51		73.79	
E114	65.21		64.87		64.55		65.01	
E113	113.86*		113.86*		113.86*		113.86*	

http://www.china-simulation.com

第 33 卷第 9 期	系统仿真学报	Vol. 33 No. 9
2021年9月	Journal of System Simulation	Sep. 2021

4 种算法各运行 40 次,优化结果见表 2。当在 E1,E113 设定固定风机风量,在E154,E120 设定需 风量后,GA 解出调风方案是在E170 和E120 分支增 阻,PSO 解出调风方案是在E175,E121 和E119 分 支增阻,IPSO 解出调风方案是在E159,E173 和E119 分支增阻,SA-IPSO 解出调风方案是在E159,和E120 分支增阻。通过表 3 和图 4 可以发现 GA 算法迭代收 敛速度最快,但是进化效果不佳。PSO 算法优化效果 优于 GA 算法,但收敛速度较慢,IPSO 算法的收敛优 于 PSO 算法。SA-IPSO 算法优化效果最佳,收敛速度 慢于 IPSO, PSO 及 GA 算法,虽然增加了收敛及计 算成本,但是其最优解及平均风压都优于其他算法。

在风机风量固定不变的情况下,减小通风阻力 来降低通风总能耗,在确定优化方案后通过 SA-IPSO 算法计算得出的最优功率较优化前功率 降低了 95.69 kW,通风总能耗减小 25.3%,通过表 4 对比实测值证实解算出的风量满足各巷道的需风 量。具体调节添加实施位置如图 5 所示。

	表 3	算法优化效果比较	
Tab. 3	Comparison	of optimization results	of algorithms

算法	最优解/kW	平均风机风压/Pa	平均收敛代数	平均收敛时间/s	平均每代收敛时间×10 ⁻³ /s
GA	333.79	2 097.59	166.00	1.01	6.08
PSO	320.63	2 014.89	218.00	1.85	8.48
IPSO	313.76	1 971.72	231.00	2.02	8.74
本文	282.51	1 775.34	340.00	3.30	9.70

Fig. 4 Power fitness curve

(a) 模拟风门添加位置1

(b) 模拟风门添加位置 2

图 5 实施位置图 Fig. 5 Implementation location map

http://www.china-simulation.com

第 33 卷第 9 期 2021 年 9 月

表 4 解昇风重具实性比较

Tab. 4 Comparison of real and calculated wind volume

		$/(m^{3} \cdot s^{-1})$
巷道名称	实测风量	解算风量
-190 南翼皮带入风	35.00	36.13
-420车房煤柱工作面用风	12.19	11.94
-420 车房煤柱工作面回风	13.23	12.99
六部猴车	38.50	39.59
14 273 工作面回风	20.17	19.68
二级回风	75.05	73.79

5 结论

结合矿井通风三大定律,最小化通风网络总功 率,建立矿井通风非线性优化模型,加入惩罚项。 针对该优化问题,采用 SA-IPSO 优化算法对问题 进行求解。该算法充分利用 SA 随机跳出局部最优 的搜索能力,在 PSO 中引入遗传算法变异的思想, 对非线性粒子群进行优化,避免粒子早熟,并能够 精准求得矿井通风风量,提供合理的分风方案。面 向具体的新屯矿井通风网络进行仿真,在固定风机 风量并确定需风分支风量后,进行通风网络系统优 化。结果表明应用基于 SA-IPSO 通风网络优化算法 进行优化后,通风网络总能耗能够降低 95.69 kW。 对比其他 3 种算法,该算法能够有效降低通风能 耗,效果更优。

在今后研究中,在智能化算法理论与技术^[20] 大背景下,通过传感器将巷道中风量通过接口实时 传入程序中,利用 SA-IPSO 智能算法准确解算出 通风网络中各巷道最优风量值及风机最优功率值, 为矿井提供最合理的分风方案。

参考文献:

[1] 陈开岩. 矿井通风系统优化理论及应用[M]. 徐州: 中国矿业大学出版社, 2003.

Chen Kaiyan. The Theory and Application of Mine Ventilation System Optimization[M]. Xuzhou: China University of Mining and Technology Press, 2003.

[2] 刘剑. 流体网络理论[M]. 北京: 煤炭工业出版社, 2002.

Liu Jian. The Fluid Network Theory[M]. Beijing: China Coal Industry Publishing House, 2002.

[3] 张庆华,姚亚虎,赵吉玉.我国矿井通风技术现状及

智能化发展展望[J]. 煤炭科学技术, 2020, 48(2): 97-103.

Zhang Qinghua, Yao Yahu, Zhao Jiyu. Status of Mine Ventilation Technology in China and Prospectsfor Intelligent Development[J]. Coal Science and Technology, 2020, 48(2): 97-103.

- [4] 苏义鑫, 戈乐, 程诗佳. 基于改进遗传算法和 BP 神经 网络的矿井通风风速预测[J]. 河南理工大学学报(自然科学版), 2017, 36(4): 20-25.
 Su Yixin, Ge Le, Cheng Shijia. Mine Ventilation Rate Forecasting Based on Improved Genetic Algorithm and BP neural Network[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(4): 20-25.
- [5] 郭一楠, 王春, 杨继超. 基于文化粒子群优化算法的 矿井通风网络[J]. 东南大学学报(自然科学版), 2013, 43(增1): 48-53.
 Guo Yinan, Wang Chun, Yang Jichao. Mine Ventilation Network Based on Cultural Particle Swarm Optimization Algorithm[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1): 48-53.
- [6] 库向阳,常新坦,孙艺珍.基于遗传算法的通风网络两步法风流调节优化算法[J].中南大学学报(自然科学版),2011,42(9):2729-2736.
 She Xiangyang, Chang Xintan, Sun Yizhen. Genetic Algorithm-Based Two-Step Ventilation Network Optimization Algorithm for Ventilation Network[J]. Journal of Central South University (Natural Science Edition), 2011, 42(9): 2729-2736.
 [7] 库向阳,常新坦.基于遗传算法的一体化通风网络优
- [7] 库间阳, 帛新坦. 基于遗传算法的一体化通风网络化 化算法[J]. 中南大学学报(自然科学版), 2011(6): 1676-1684.
 She Xiangyang, Chang Xintan. Integrative Optimization Algorithm of Min Ventilation Networks Based on Genetic Algorithm[J]. Journal of Central South University (Science and Technology), 2011(6): 1676-1684.
 [8] 张兴国,周玉. 基于 ACPSO 算法的矿井通风网络解
 - 8] 张兴国,周玉. 基于 ACPSO 算法的使并通风网络解算研究[J]. 辽宁工程技术大学学报(社会科学版), 2018, 20(4): 305-311.
 Zhang Xingguo, Zhou Yu. Study on ACPSO Algorithm for Mine Ventilation Network[J]. Journal of Liaoning Technical University (Social Science Edition), 2018, 20(4): 305-311.
- [9] 王海宁, 彭斌, 彭家兰. 基于三维仿真的矿井通风系 统及其优化研究[J]. 中国安全科学学报, 2013, 23(2): 123-128.

Wang Haining, Peng Bin, Peng Jialan. Study on Mine Ventilation System and Its Optimization Based on 3D

第 33 卷第 9 期	系统仿真学报	Vol. 33 No. 9
2021年9月	Journal of System Simulation	Sep. 2021

Simulation[J]. China Safety Science Journal, 2013, 23(2): 123-128.

[10] 吴新忠,胡建豪,魏连江.矿井通风网络的反向增强
 型烟花算法优化研究[J].工况自动化,2019,45(10):
 17-22,67.

Wu Xinzhong, Hu Jianhao, Wei Lianjiang. Research on Opposition Based Enhanced Fireworks Algorithm Optimization for Mine Ventilation Network[J]. Industry and Mine Automation, 2019, 45(10): 17-22, 67.

- [11] 黄元平,李湖生. 矿井通风网络优化调节问题的非线 性规划解法[J]. 煤炭学报, 1995 (1): 14-20.
 Huang Yuanping, Li Husheng. Solution of Problems Relevant to Optimal Control of Mine Ventilation Network by Non-linear Programming Technique[J].
 Journal of China Coal Society, 1995(1): 14-20.
- [12] 潘昊, 侯清兰. 基于粒子群算法的 BP 网络学习研究
 [J]. 计算机工程与应用, 2006, 42(16): 41-42.
 Pan Hao, Hou Qinglan. Study on BP Network Learning Based on Particle Swarm Optimization[J]. Computer Engineering and Applications, 2006, 42(16): 41-42.
- [13] 刘锦萍, 郁金祥. 基于改进的粒子群算法的多元线性 回归模型参数估计[J]. 计算机工程与科学, 2010, 32(4): 101-105.

Liu Jinping, Yu Jinxiang. Multiple Linear Regression Model Parameter Estimation based on Improved Particle Swarm Optimization[J]. Computer Engineering and Science, 2010, 32(4): 101-105.

[14] 陶海龙,李小平,张胜召,等.基于 IPSO-BP 神经网络的铁路客运量预测[J].铁道运输与经济,2011,33(9): 78-82.

Tao Hailong, Li Xiaoping, Zhang Shengzhao, et al. Railway Passenger Volume Forecast Based on IPSO-BP Neural Network[J]. Railway Transport and Economy, 2011, 33(9): 78-82.

[15] 陶海龙. 基于混合智能算法的铁路运量预测研究[D].

兰州: 兰州交通大学, 2012.

Tao Hailong. Research on Railway Traffic Volume Prediction Based on Hybrid Intelligent Algorithm [D]. Lanzhou: Lanzhou Jiaotong University, 2012.

- [16] Tsai H C. Unified Particle Swarm Delivers High Efficiency to Particle Swarm Optimization[J]. Applied Soft Computing (S1568-4946), 2017, 55(1): 371-383.
- [17] Mi Y Q, Gao Y L. The Improved Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems[J]. Journal of Jiangxi Normal University (Natural Science) (S1000-5862), 2017, 55(1): 371-383.
- [18] 李淑香. 基于模拟退火的粒子群算法在函数优化中的应用[J]. 沈阳工业大学学报, 2019, 41(6): 664-668.
 Li Shuxiang. Application of Particle Swarm Optimization Algorithm Based on Simulated Annealing in Function Optimization[J]. Journal of Shenyang University of Technology, 2019, 41(6): 664-668.
- [19] 高鹰,谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用,2004(1):47-50.
 Gao Ying, Xie Shengli. Particle Swarm Optimization Algorithm Based on Simulated Annealing[J]. Computer Engineering and Application, 2004(1):47-50.
- [20] 卢新明, 尹红. 矿井通风智能化理论与技术[J]. 煤炭 学报, 2020, 45(6): 2236-2247.
 Lu Xinming, Yin Hong. The Intelligent Theory and Technology of Mine Ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2236-2247.
- [21] 张利凤, 胡小兵. 求解非线性约束问题的混合粒子群 优化算法[J]. 计算机科学, 2011, 38(增1): 178-180, 188.
 Zhang Lifeng, Hu Xiaobing. Hybrid Particle Swarm Alogrithm of Solving Nonlinear Constraint Optimization Problems[J]. Computer Science, 2011, 38(S1): 178-180, 188.