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Abstract: This paper focuses on the state estimation for multi-sensor system with network delays and
correlated noises. An orthogonal transformation method is applied to remove the correlations between
different noises. For the problem of packet delays due to the unreliable network, a buffer with certain
length is introduced to store the measurements, and the measurements are reordered using a timestamp in
the buffer. Based on that, a novel sequential data fusion algorithm is proposed, by which the influence of
the noise correlation and packet delays can be weakened effectively. Compared with the traditional
sequential fusion method, the proposed algorithm has higher estimation accuracy. Simulation results show
the effectiveness of the proposed algorithms.
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research results have been proposed for these
problems!!).

Multi-sensor system has more channels than
single sensor system, so the crosstalk between
channels is inevitable. A fusion algorithm with
multiple channels and single channel is considered
in Ref.[2]. The paper proposes the best linear
unbiased estimation under minimization of the mean
square error, and proves that it is always convergent.
In particular, in Ref.[3], an optimal unbiased finite
impulse response algorithm which consists of a
robust UFIR filter implemented by a smart sensor is
studied. The algorithm is more robust to noise
statistical errors and model uncertainties. Ref.[4]
develops the asynchronous correlation between
system and measurements in the non-linear multi-
sensor multi-rate system. Based on Ref. Ref.[3], a
distributed fusion algorithm for the correlation
between measurements noises is presented in Ref.[5].
In the other hand, an optimal distributed robust
Kalman-type recursive filter with auto-correlated and
cross-correlated noises is proposed in Ref.[6].
Recently, Caballero-Aguila presents a distributed
filter in which the process and measurement noises
are one-step auto-correlated and two-step cross-
correlated in Ref.[7]. Meanwhile, Ref.[8] proposes
a model not only with correlated noises, but also
with unreliable measurements which is common in
wireless network system.

From Ref[8], we «can see that the
measurement-delays are the focus of recent
research results too. A distributed estimation
fusion algorithm for multi-rate multi-sensor
systems with measurement delays is presented in
Ref.[9].

network topology and agent dynamics is given in

The boundary of delay steps due to

Ref.[10] by employing algebraic Riccati equation.
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Yanyan Hu and Zengwang Jin concern the fusion
estimation problem for stochastic systems with
asynchronous multi-sensors and multiple packet
dropouts in Ref.[11]. The asynchronous sensor
measurements will be aligned to the fusion time
before fusing the estimates. In Ref.[12], a finite
length buffer is used to deal with measurement delay
or loss, and a distributed federated Kalman filter
fusion is presented. An optimal asynchronous
estimation fusion algorithm is derived in Ref[13]
based on the transformed equivalent measurement.
The algorithm in this paper can have arbitrary
sampling rates and arbitrary initial sampling instants.
Meanwhile, an optimal distributed fusion method for
the system with delay and uncertain observation is
given in Ref[14]. For stability of multi-channel
decentralized systems, Ref.[15] gives the upper and
lower bound conditions that the packet loss rate
should be satisfied when the system is stable. Taking
into account the multi-rate problem, the state
estimation problem of multi-rate multi-sensor
systems with correlated noises is studied in
Ref.[16]. Meanwhile, the influence of unreliable
measurements and correlated noises is analyzed in
Ref.[17], where the method of decorrelation is the
same as the method in Ref.[16].

From the aforementioned analysis, we know that
the noises correlation and measurement-delays which
are both common in wireless multi-sensor network
are rarely considered simultaneously in previous
research. Focusing on that, this paper presents a
sequential fusion center decorrelated through
orthogonal transformation, and a buffer with certain
length is proposed to store the measurements which
are delayed. The performance is analyzed.

The rest of this paper is organized as follows:

The stochastic system model with measurement-
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delays and noise correlations is formulated in Section
2. The process of decorrelation, the storage method
of the buffer and a new data fusion estimation
method are proposed in Section 3. Section 4 gives the
simulation results to illustrate the effectiveness of the
proposed algorithm. Finally, Section 5 gives the
conclusions.

Notation: Throughout this paper, (-)" and ()™
denote the transpose and the inverse of the matrix,
stands for the n-dimensional

R™" defined as the set of

respectively. R"
Euclidean space.
allmx nreal matrices. The statistical expectation is
denoted as E{-}. E{xly} is the expectation value
of Xunder the condition y . The matrix | and O are the
identity matrix and the zero matrix of an appropriate

size, respectively.
1 Problem Formulation

Consider the following discrete linear stochastic

system:
x(k +1) = F(k)x(k) + w(k) €))
yi(k) = H;(k)x(k) +vi (k) i1=12,--,N 2

where x(k)eR" is the state vector of the system,
yi(k)eR™
sensori, F(k)eR™and H;(k)eR™" are known

matrices, W(K) and v;(k) are zero-mean Gaussian

is the measurement vector of the

white noises. The initial state x(0) is independent of
w(k) and v;(k) . It is assumed to be Gaussian
distributed with E{x(0)} = s, and
E{[X(0)— 4, ][X(0) = g, ]"} =P, . w(k) and v;(k)

meet statistical properties as follows:

E{w(k)}=0 (3)
E{v,(k)} =0 4)
E {w(k e (|)} =0 )
E {wlow' (] = Q(K)5, (©)
E{vi (v} (D} = Ry ()3 )

where 0 is the kronecker function. The process

noises are cross-correlated with the measurement
noises one-step apart and the measurement noises
are correlated between different sensors during a
fusion interval which is expressed in Eq.(6) and
Eq.(7). For convenience, R;(k)is abbreviated as
R; (k) when i=j.

The measurements of local sensors are time-
stamped, and then transmitted through the wireless
network to the fusion center directly. Moreover, the
wireless transmission channel is unreliable, which
means that the system may suffer measurement
delays or losses during the transmission due to the
unreliability. The measurements will reorder by the
time-stamping when they arrive at the fusion center.
For the model in this paper, each measurement delays
df( step, which satisfies the following random
distribution:

fi(m=Pr{dg =m} m=12,-, i=1,2,3N

It is assumed that df'andd%’are independent
with each other, if il1#i2orkl=k2 . Furthermore,
df(is also independent of w(t), v;(t)and the initial
state X(0) .

In this paper, all the data that arrive correctly at
the fusion center will be stored in a buffer with length
LU e yi(t—L+h) (h=1,2,---L) does not arrive
between t—1+h and t, it will be considered to be
lost. This process is modeled by a random
variable 7/ik (t):

7=
{1, if the nTeasurernents arrives at or before t )
0, otherwise

As shown in (8), if »¥(t)=1, then »**'(t)=1
Vle N, that means if y;(k—-L+h) (h=L2,---L)
arrives at the fusion center at or before t, it will be
considered to be present at all the time in the future.
The storage method of the buffer at time t can be

written as:
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Vi (0 =7 OH OX®) + 7 OV ()

Let V;(t) =7 (®)V(t), then

Ry (®) = E{v,(0v] (v
where R;; (k) is abbreviated asR;(k)ifi=j, and

R(®)=

Ri(t), if'the measurement reaches at or before t,

{azl, otherwise.

From Eq.(9), we can know that the variance of
the measurement noises at t is R;(t), if ;/ik =1,
otherwise is o*| , where & —> .

The optimal estimation problem is defined as
follows:

%(k, k) = E{x(K)| Y (), 7(K)}

R(k.k ~1) 2 E{x(k)[Y (k ~ 1), 7(k 1)}

Y(K) =y M),y (), Y (k)

Y(K) =y M),y (), Y (k)

y(K) = 1,7 )7 (k)

700 = (1 (DT GAKRD . (g (k)T

2 Main result

2.1 Decorrelation

As shown in Eq.(6) and Eq.(7), there are two
kinds of noise correlation have been considered in
this paper. For simplicity, the cross-correlation
between measurement noises and process noises is
called the correlation Eq.(1) and the auto-correlation
between the measurement noises of different sensors
is called the correlation Eq.(2). We adopt an
orthogonal transformation method to remove the noise
]

. 19
correlations!'",

Define an augmented state vector:

| ox(k)
X(k)_[x(k —1)}

then we have
X(K)=F (k=DX(K)+w (k-1) (10)

where

ARG HAR
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F*(k){F(k) 0 }

0 Fk-=D

wk-D=[wk-1) wk-1]

The measurement equation can be rewritten as

yi (k) = hy (k)X (k) +v; (k) (11
where

h(K)=[H;(k) 0]

and
E {w*(k —1V (k)} = [Si(()k)} (12)

The prediction for Eq. (10) is

)Z(k,k—l):{ (k,k —1) }

Rk -1k -1) (13)

Define:

Pk —1) = E{(X(k)—X(k,f—l» }
(X (k)= X(k.k=D)")

then

P(k,k —1)

Px(k,k—l)={ . (14)
C

Pk -1,k - 1)}
where

¢ =E{X(k k=D kD' } =

F(k-DPk-1Lk-1)
A. Remove correlation Eq.(1)

Firstly, introducing an intermediate variable
T.(k)=S] (k)Q'(k) and Eq.(11), the
measurement equation is rewritten as

yi (k) = (k) X (k) +v; (k) + T, (K)[x(k) -
F(k=Dx(k-1)-wk-1)]= (15)
H* (k)X (k) + v} (k)

using

where
HI () =[Hi(k) 0]+[Ti(k) -T(WF(k-D)]
vi (k) =v; (k) =Ty (kow(k — 1)
From Eq.(15) and Eq.(16), we have

E{w*(k—l)(v?f}{g} (17)

(16)

R (k)= E{v; () () } =R (k) =T, (€S (k) (18)
R () = E{v; (kv (k)] = Ry (k) =T (K)S () (19)
According to Eq.(17), we know that the

http: // www.china-simulation.com
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correlation Eq.(1) has been removed.
B. Remove correlation Eq.(2)

Although correlation Eq.(1) has been removed
in 3.1-A, the correlation Eq.(2) still exists as shown
in Eq.(19). Next, we will remove correlation Eq.(2).

Define

9 (k) = R} (KR (k)"

iy D* * -1
gz(k)—. Ri2 (K)(Ry (k) (20)

911 (K) = R (KR (k)™

and let
i-1 .
v; (k) = v; (k) = Y- g5 (k)vj (k)
j=1
where
R (k)= E{v (O (k) | =Ry, (k)
R (K) = E{v; (k)(v; (k) | =
Ri2 (k) =R, (K)(g7 (k)
Rii () = E{v; (k) (k)" =
i-2 )
Riia (K) = 2R (k)@ (k)
j=1

then the measurement equation can be rewritten as

following:
;i (K) = H; (K)x(k) +; (k) + G; (K)(Z;_, (k) -
i (X (K +V,7 (k) @1
where

Z; () =[O 0. Do DT |
i () =[(H] KD . (H3 () (H DT |
Vi 0 =[] () (00 e ()T |
Gy () =] 9 (K), 95K, g7, (0 |

Let
y; (k) = y,(K) =G, (K)Z, (k) (22)
H; (k) = H; (k) = G (k)i (k) (23)
v; () =V, (K) = G; (K)vi ; (K) (24)

then we can get

Vol. 31 No. 12
Xl 4% S 3R 1) 20 A% TR o B b Rl Dec., 2019
y; (K) = H{ (K)x(k) +V; (k) (25)

where v, (K) satisfies:
E{w()v (k)" } =0
E{v (0 ()" | =0

E {vi_, (0, ()" } =0

As shown above, the process noises are no
longer correlated with the measurement noises, and
the correlations between measurement noises from

different sensors are removed successfully too.
2.2 Determination of the update time

Now we will determinate the update time of the
buffer.

Ref.[18] presents the method to compute the
length of each channelL;. The buffer length in this
algorithm is L = max{Li} i.e., the buffer length in
this paper is the longest length of the single-channel
butfer.  ZX() = ((yf @), (Y3 )"+, (Y DT
(t=k—-L+1,---,k) are stored in the t—L +k slot of
the buffer at time k, the dummy variable 0 would be
stored in the corresponding slot if the measurement
has not been received until time K.

Define

N N
~ min{t > A O>Y T 0.k-LrIst< k}
= = = (26)

k otherwise.

From Eq.(26), it can be seen that 7 is the earliest
time, when at least one measurement yit (r) is
received by the fusion center at t. Fig. 1 shows an

example of .

n(5) »1(6) n(8)
»(7) = »(7)
¥3(5) 3(6) ¥3(6) ¥:(7)
=8 k=9

Fig. 1 Example of t

http: // www.china-simulation.com

* 2621 ¢

Published by Journal of System Simulation, 2019



Journal of System Simulation, Vol. 31 [2019], Iss. 12, Art. 7

3L EE 128
2019 4F 12 F

In Fig. 1, the blue cell means that the
corresponding measurement is stored in the buffer at
current time, ie., Y'(5) , y5(5), Y (7)., Yi(5),
y38 (6) arrive at or before time 8, yl9 (6) arrives at
time 9, so the earliest update time is 7=6 .

Now we will give the sequential filtering method
with communication delays and correlated noises.
Algorithm 1 The sequential filtering method with
communication delays and correlated noises.

As shown in Eq.(26), 7 is the earliest time, when
at least one measurement y'(r)is received by the
fusion center at t, so we can get

)A(',ﬁl (r-Lr-1)= )A(K,_I(T—l,r—l)

Pi(r-1r-) =P (r-1,7-1)

step 1: Initialization

xg(z,r){F(’ka’A‘ﬁ (r—l,r—l)} o7
XN -Lr-1)
R’ (z.0)=
l:F(r—l)P,ﬁ(r—l,r—l)FT(r—l)+Q F(r—l)P,ﬁ(r—l,r—l):l 2%)
(Fe-DR(r—1Lz-1) Ri(r—17-1)

step 2: Measurement update

KM =P an[H® ] [H ORY € >

(H'®O) +R ®]" (29)
XEth =X e+ KoK o[y ) -
H XS, 0] (30)

RU@ =[ 1 - OKI OH O RS 3D

)Z,I\,(k,k) and P{(k,k) can be obtained by

4>‘x(k)(r+l,r+l)

ARG HAR
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iterating N times
step 3: Extract the estimated value
RE(t,1) = X5 (t,1) (32)
P(t,t) = P&(t,1) (33)
step 4: Prediction
)Zg(t+1,t+1):{F(tz)A(N (t’t)} (34)
& (t,1)
PEt+Lt+1)=
{F(t)PNk LHF' O+Q FOR (t,t)} 35)
(FOPI &) Pu (1)

step 5: Repeat Step 2 to Step 4 for k — 1 times,
we can get X*(k,k) and P(k,k).

step 6: Get the final result

R(k, k) = (k, k)

The flow chart of the novel sequential algorithm
is given by Fig. 2.

Theorem 1: Consider the stochastic linear
system given in Eq.(1) and Eq.(2), and the package
arrival process Eq.(8). Let X(k,k) be the estimation
computed by algorithm 1 with a certain length buffer,
and X(k,k)
Assume

P(k,k)=E {(x(k) — Rk, K)) (x(K) = R(k,K))" }
Bk, k)= E {(x(k) — x(k, k) (x(K) = X(K, k)" }

is the estimation without buffer.

then

x('j(z',z')

i) |

v R

xf (z.7) x(r+lr+1)

------ A @A @] | e e ey (D) e ey O )

| |

xf,(r,r) x’;,(r+l,r) xh(r+1Lr+1)

Fig. 2 Flow chart of the proposed algorithm
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P(k,k) < |5(k,k) (36) The results of the simulation of two channels of

Proof: According to the definition of X(k,k) ,
R(k,K) 2 E{x(K)[Y (k),7(k)} where Y (K)=(y'(1),
Y@y k) L YR =)L k)T
(yN(k)T)T . We can get that Y(k) include the
measurements which arrive on time and delay no
more than L—1 steps. Meanwhile, X(k,k) is the
estimation without buffer, so Y (k) only includes the
measurements arriving on time. Obviously, Y (k)
includes more messages than Y (k). In other words,
Y (k) contains Y(k), so we can get the conclusion
that P(k,k) < P(k,k).

3 Simulation

In this section, we present an example to verify
the effectiveness of the algorithm. System parameters

are set as following:

HM:B ﬂ,W=W50L

H,=[0.5 -0.5], Q:[l/3 1/2}

1/2 1

v;(k) is defined as following:

vi(K) = A *w(k) +©, (k)

v, () = A, *w(k) + ©, (k)
where: A =[4 8], A =[45 7.5]. ©,Kk) and
0,(k) are independent additive white gauss noises,

and the covariance of [0,(K),®,(K)] is

ol (k
o sG]
2

We assume that the number of data delay step

satisfied the Poisson distribution*”)

with an average
value of d;, that is, its probability density function

satisfies:

m ,—d;
fi(m):M,m:O,l,...
m!

where d; = E{d,i(} represents the mean of the number
of delay steps for each channel. In the simulation of

this section, we assume d;=3 andd,=2.

the system state are shown in Fig. 3 and Fig. 4. This
is to be expected, the traditional sequential filter
(green line) can trace the real state (red line), but the
algorithm in this paper (blue line) can trace better
obviously, whatever in channel 1 or channel 2, so the
algorithm in this paper has better performance than
traditional fusion center. The traces of the error
covariance of traditional sequential filter and the
algorithm in this paper are shown in Fig. 5, from
which we can see that the trace of error covariance for
the algorithm in this paper is always lower than the
traditional sequential filter. From this example, we can
see that the algorithm in this paper can improve the

estimation accuracy when the noises are correlated.

200 the algorithm in this paper
150 | ‘ /K & pap
100 J \

7 \
50 //}] \
0 ¢ state \v/i‘%\\

Ny

-50 the tradional sequential ﬁlter\\;
-100 \

0 50 100 150 200

Fig. 3 Estimation curves of channel 1

I |4 - the tradional sequential filter
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Fig. 4 Estimation curves of channel 2

From Fig. 6, we can see that the trace of error

covariance of the filter with the buffer is much lower
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than the trace of the error covariance of the filter
without the buffer, which means that the method in
this paper can reduce the impact of measurement
delay. Meanwhile, the buffer length can also influence
the performance of filter. As shown in Fig. 7, the
performance of the filter with L=5 is better than the
filter with L=3 i.e., the fusion center with longer

buffer length will have better performance.
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Fig. 5 Traces of error covariance of two filters
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Fig. 6 Traces of the covariance of filter
without buffer and L=5.
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Fig. 7 Traces of the covariance of filter
with L=5 and L=3.
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From Fig. 8, we can know that the buffer with
length L=6 cannot improve the performance too
much, instead, it will increase the calculation burden
of the system. Therefore, the buffer should choose
the appropriate length. If the buffer length is too long,
it will not significantly improve the performance, but

increase the computational burden.

8
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6 (‘ﬁ_\/,/ ™~ length=6
5 N
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2 v
] V'
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0 50 100 150 200

Fig. 8 Trace of the covariance of
filter with L=6 and L=5.

4 Conclusions

For the wireless multi-sensor system, this paper
considers two kinds of noise correlations and
measurement delays. The correlations are removed
by orthogonal transformation method first, then a
sequential fusion algorithm with buffer is proposed to
fuse the measurements from multi-channel and
reduce the impact of measurements delay on the

system at the same time.
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