# Journal of System Simulation

Volume 31 | Issue 4

Article 25

11-20-2019

# Comparison and Analysis of Output Performance of Different PV Structures under Shadows

Yonghong Xia

1. School of Information Engineering Nanchang University, Nanchang 330031, China; ;2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China; ;

Mengru Li 1. School of Information Engineering Nanchang University, Nanchang 330031, China; ;

Jianbo Xin 2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China; ;

Zen Fanpeng 3. Jiangsu LinYang Energy Co.,Ltd, Qidong 226200, China;

See next page for additional authors

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation.

# Comparison and Analysis of Output Performance of Different PV Structures under Shadows

# Abstract

Abstract: The output power of PV array not only depends on the irradiance intensity of the partial shadows, but also on the shadows shape. For the serious power loss under partial shadows of the traditional SP (Series-Parallel) and TCT (Total-Cross-Tied) structures, an optimized TCT structure is proposed. Output capacity comparison was made based on the three structures in five shadow modes under the circumstances of the severe shadows and uneven irradiation. By using Matlab/ Simulink software, the output performance of the three structures was simulated under different shadow shapes in symmetrical and asymmetric arrays. The results show that PV array with the optimized TCT structure works better in the different shadow conditions, which can provide selection references for the array structure in the construction of photovoltaic plants.

### Keywords

photovoltaic module, array structure, partially shading, optimization configuration

#### Authors

Yonghong Xia, Mengru Li, Jianbo Xin, Zen Fanpeng, and Yunjun Yu

## **Recommended Citation**

Xia Yonghong, Li Mengru, Xin Jianbo, Zen Fanpeng, Yu Yunjun. Comparison and Analysis of Output Performance of Different PV Structures under Shadows[J]. Journal of System Simulation, 2019, 31(4): 802-810.

# 阴影下不同光伏阵列结构输出性能对比与分析

夏永洪<sup>1,2</sup>,李梦茹<sup>1</sup>,辛建波<sup>2</sup>,曾繁鹏<sup>3</sup>,余运俊<sup>1</sup>

(1.南昌大学 信息工程学院, 江西 南昌 330031; 2.国网江西省电力公司电力科学研究院, 江西 南昌 330096;3.江苏林洋能源股份有限公司, 江苏 启东 226200)

**摘要:**光伏阵列的输出功率不仅取决于阴影处辐照度的强弱,还与阴影形状有关。*针对传统 SP(Series-parallel)结构、TCT(Total-Cross-Tied)结构在某些阴影情况下功率损失较严重的问题,提出 了一种优化的 TCT 结构。*在严重遮挡和辐照不均匀两种情况下,设置了 5 种阴影模式,对比分析 了 3 种结构的输出能力。采用 Matlab/Simulink 软件,仿真了不同的阴影形状,以及对称阵列和不 对称阵列下 3 种结构的输出性能,仿真结果表明:优化 TCT 结构能更好的适应不同的阴影情况, 为光伏电站建设时阵列结构的选择提供了参考。

关键词:光伏组件;阵列结构;阴影遮挡;优化配置

中图分类号: TM615 文献标识码: A 文章编号: 1004-731X (2019) 04-0802-09 DOI: 10.16182/j.issn1004731x.joss.17-0142

#### **Comparison and Analysis of Output Performance of Different PV Structures under Shadows**

Xia Yonghong<sup>1,2</sup>, Li Mengru<sup>1</sup>, Xin Jianbo<sup>2</sup>, Zen Fanpeng<sup>3</sup>, Yu Yunjun<sup>1</sup>

(1. School of Information Engineering Nanchang University, Nanchang 330031, China; 2. State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China; 3. Jiangsu LinYang Energy Co.,Ltd, Qidong 226200, China)

**Abstract:** The output power of PV array not only depends on the irradiance intensity of the partial shadows, but also on the shadows shape. *For the serious power loss under partial shadows of the traditional SP (Series-Parallel) and TCT (Total-Cross-Tied) structures, an optimized TCT structure is proposed.* Output capacity comparison was made based on the three structures in five shadow modes under the circumstances of the severe shadows and uneven irradiation. By using Matlab/ Simulink software, the output performance of the three structures was simulated under different shadow shapes in symmetrical and asymmetric arrays. The results show that PV array with the optimized TCT structure works better in the different shadow conditions, which can provide selection references for the array structure in the construction of photovoltaic plants.

Keywords: photovoltaic module; array structure; partially shading; optimization configuration

# 引言

光伏系统的效率易受环境因素的影响,如:云



收稿日期:2017-03-24 修回日期:2017-06-14; 基金项目:国际科技合作专项(2014DFG72240); 作者简介:夏永洪(1978-),男,江西丰城,博士,副 教授,硕导,研究方向为电机及其控制、分布式发电 及微网;李梦茹(1993-),女,江苏徐州,硕士生,研 究方向为光伏电站能效优化。 层,电线杆,树木等造成的阴影而降低。如何在光 伏阵列表面光照不均匀时提升发电量,削弱遮阴造 成的失配问题已成为一个研究重点<sup>[1]</sup>。

传统光伏阵列通常采用串并联的方式(Seriesparallel, SP)进行组件连接。在组件串内单个组件 受阴影产生不同的光生电流时,易产生热斑效应, 通常并联旁路二极管来防止光伏组件的损坏。网状 连接(Total-Cross-Tied, TCT)在光伏组件串之间引

入了附加的连接<sup>[2]</sup>,当阴影造成某个组件中的电流 变化,这种拓扑结构可使不同电流流经不同组件 串,从而减小被遮挡组件中的电流,使其工作在正 向偏压区并输出一部分功率,以提高系统阴影下的 输出能力<sup>[3]</sup>。由于阴影分布区域及面积大小同时影 响着光伏阵列输出功率,许多学者通过研究阵列重 构及组态优化来减轻其影响。文献[4]提出了一种基 于模糊控制的自适应重构方法。阴影时通过模糊计 算,将光伏阵列重新配置,利用开关矩阵的闭合切 除阴影模块,避免功率损失,随后再进行阵列的补 偿。但阴影模块亦有功率输出,此方法造成了一定 功率的浪费。文献[5]将每个光伏组件配备了一个继 电器开关,通过对组件工作状态的实时监测,控制 继电器开关网络来调整阵列拓扑结构,以适应阴影 分布。文献[6]将光伏阵列分为固定部分和可调整部 分, 阴影时将可调整部分具有最大开路电压的电池 元并联到固定部分具有最小电压的一行,减小因电 池串并联产生的电压电流限制。文献[4-6]的基本思 想均为用可控开关调整光伏阵列,即电气阵列重构 技术(Electrical Array Reconfiguration, EAR)。该方 法不仅需要改变阵列的电气结构,还需要多个传感 器及继电器。文献[7]提出改进 TCT 结构布置从而 增强阴影条件下的发电能力。这种配置方案通过调 整相同列光伏组件的次序,减少同一行组件受阴影 遮挡的数量。由于阵列的电气结构不改变,所以其 特性与 TCT 布置相同,但只适用于对称光伏阵列。 文献[8]在文献[7]的基础上提出了一种基于任意 m×n 阵列的 TCT 重构方案,这种结构比需要继电开 关来重新配置的阵列结构更简单,并可以确保系统 运行的可靠性。但其所考虑的阴影情况不全面,且 没有对对称阵列使用重构规则后的性能进行验证。 因此,本文利用 TCT 重构算法分别构造了对称及 不对称的光伏阵列,通过 Matlab/Simulink 软件搭 建仿真模拟在不同的阴影形状及辐照强度下的输 出性能,同时与处在同一环境下的 SP、TCT 结构 进行对比分析,评估三种阵列结构阴影下的输出能 力,以适应场景需要选择最优配置。

# 1 TCT 优化模型

在 TCT 结构中,同一列的光伏组件串联连接,同一行的模块并联连接。本文构造了 2 个阵列结构,分别为 11×9 阵列及 12×12 阵列,如图 1 所示。每个光伏组件以"mn"表示其所在的行及列。例如,编号 23 的组件表示其位于阵列中的二行三列。

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |

(a) 11×9 阵列

|     |     | _   |     |     |     | _   |     |     |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

#### (b) 12×12 阵列

图 1 阵列排布示意图

Fig. 1 Array arrangement

该优化模型是保持 PV 阵列第一列不变,将从 第二列开始的光伏组件重新排布,把光伏组件下 移,确保原先处在同一行的组件在优化后分散到光 伏阵列的不同行,且相邻两列原先处在同一行的组 件经优化后行位置应尽量错开。图 2 示出了图 1 经过重新调整布置的 TCT 结构。这种配置方式不

| 第 31 卷第 4 期 | 系统仿真学报                       | Vol. 31 No. 4 |
|-------------|------------------------------|---------------|
| 2019年4月     | Journal of System Simulation | Apr., 2019    |

改变原来光伏组件的电气连接,仅改变了放置位 置。如 11×9 阵列中的光伏组件 62(第六行,第二 列)放置在第一行第二列上,但依旧保持与组件 61 的并联关系。图 3 为部分组件的电气连接。实际应 用中,按照图 3 所示的电气连接关系进行组件连 接,即可实现该优化方法。

| 11  | 62  | 113 | 54  | 105 | 46  | 97  | 38  | 89  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21  | 72  | 13  | 64  | 115 | 56  | 107 | 48  | 99  |
| 31  | 82  | 23  | 74  | 15  | 66  | 117 | 58  | 109 |
| 41  | 92  | 33  | 84  | 25  | 76  | 17  | 68  | 119 |
| 51  | 102 | 43  | 94  | 35  | 86  | 27  | 78  | 19  |
| 61  | 112 | 53  | 104 | 45  | 96  | 37  | 88  | 29  |
| 71  | 12  | 63  | 114 | 55  | 106 | 47  | 98  | 39  |
| 81  | 22  | 73  | 14  | 65  | 116 | 57  | 108 | 49  |
| 91  | 32  | 83  | 24  | 75  | 16  | 67  | 118 | 59  |
| 101 | 42  | 93  | 34  | 85  | 26  | 77  | 18  | 69  |
| 111 | 52  | 103 | 44  | 95  | 36  | 87  | 28  | 79  |

(a) 11×9 阵列

| _ |     |     |     |     |     |     |     |     |     |      |      |      |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|   | 11  | 82  | 23  | 74  | 125 | 56  | 107 | 38  | 99  | 410  | 1111 | 612  |
|   | 21  | 92  | 33  | 84  | 15  | 66  | 117 | 48  | 109 | 510  | 1211 | 712  |
|   | 31  | 102 | 43  | 94  | 25  | 76  | 127 | 58  | 119 | 610  | 111  | 812  |
|   | 41  | 112 | 53  | 104 | 35  | 86  | 17  | 68  | 129 | 710  | 211  | 912  |
|   | 51  | 122 | 63  | 114 | 45  | 96  | 27  | 78  | 19  | 810  | 311  | 1012 |
|   | 61  | 12  | 73  | 124 | 55  | 106 | 37  | 88  | 29  | 910  | 411  | 1112 |
|   | 71  | 22  | 83  | 14  | 65  | 116 | 47  | 98  | 39  | 1010 | 511  | 1212 |
|   | 81  | 32  | 93  | 24  | 75  | 126 | 57  | 108 | 49  | 1110 | 611  | 112  |
|   | 91  | 42  | 103 | 34  | 85  | 16  | 67  | 118 | 59  | 1210 | 711  | 212  |
|   | 101 | 52  | 113 | 44  | 95  | 26  | 77  | 128 | 69  | 110  | 811  | 312  |
|   | 111 | 62  | 123 | 54  | 105 | 36  | 87  | 18  | 79  | 210  | 911  | 412  |
|   | 121 | 72  | 13  | 64  | 115 | 46  | 97  | 28  | 89  | 310  | 1011 | 512  |

#### (b) 12×12 阵列

图 2 优化配置的 TCT 结构

Fig. 2 Optimized TCT structure

# 2 光伏阵列阴影下性能对比分析

为了对比 3 种阵列结构在不同阴影时的输出 能力,定义 5 种阴影模式:短宽型、短窄型、长宽 型,长窄型,对角线型。对于不同的阴影模式,分 2 种情况讨论:

(1) 光伏组件的阴影遮蔽较为严重,几乎无发

电能力,此种情况下将辐照度设为100W/m<sup>2</sup>,正 常光照部分的辐照度为1000W/m<sup>2</sup>。

(2) 云彩树荫灰尘等造成的光伏组件表面辐照 度不均匀。根据辐照度的渐变情况,选取1000 W/m<sup>2</sup>, 700 W/m<sup>2</sup>, 500 W/m<sup>2</sup>, 100 W/m<sup>2</sup>作为典型值, 且 设所有组件温度为 25 ℃。

光伏组件参数如表1所示。

| r   |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 11  | 62  | 113 | 54  | 105 | 46  | 97  | 38  | 89  |
| 21  | 72  | 13  | 64  | 115 | 56  | 107 | 48  | 99  |
| 31  | 82  | 23  | 74  | 15  | 66  | 117 | 58  | 109 |
| 41  | 92  | 33  | 84  | 25  | 76  | 17  | 68  | 119 |
| 51  | 102 | 43  | 94  | 35  | 86  | 27  | 78  | 19  |
| 61  | 112 | 53  | 104 | 45  | 96  | 37  | 88  | 29  |
| 71  | 12  | 63  | 114 | 55  | 106 | 47  | 98  | 39  |
| 81  | 22  | 73  | 14  | 65  | 116 | 57  | 108 | 49  |
| 91  | 32  | 83  | 24  | 75  | 16  | 67  | 118 | 59  |
| 101 | 42  | 93  | 34  | 85  | 26  | 77  | 18  | 69  |
| 111 | 52  | 103 | 44  | 95  | 36  | 87  | 28  | 79  |

图 3 电气结构连接图 Fig. 3 Electrical connection

表1 光伏组件参数

| Tab. 1 PV module paran  | neters |
|-------------------------|--------|
| 参数                      | 数值     |
| 功率 P/W                  | 245    |
| 短路电流 I <sub>sc</sub> /A | 8.74   |
| 开路电压 Voc/V              | 37.1   |
| 最大功率点电流 Impp/A          | 8.17   |
| 最大功率点电压 Vmpp/V          | 30     |

## 2.1 严重遮挡时光伏阵列输出性能

#### 2.1.1 短宽型阴影图形下阵列工作原理及性能分析

阴影在对称及不对称的 TCT 及优化配置的 TCT 结构上的分布如图 4(a)~(b)、图 5(a)~(b)所示。 由于优化配置的 TCT 结构并没有改变原 TCT 结构 的电气连接,因此阴影在实际的电气结构中的分布 如图 4(c)、5(c)所示。阴影处辐照度设为 100 W/m<sup>2</sup>。

夏永洪,等:阴影下不同光伏阵列结构输出性能对比与分析

Vol. 31 No. 4 Apr., 2019

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(a) TCT

| 11       82       23       74       125       56       107       38       99       410       111       612         21       92       33       84       15       66       117       48       109       510       211       712         31       102       43       94       25       76       127       58       119       610       111       812         41       112       53       104       35       86       17       68       129       710       211       912         51       122       63       114       45       96       27       78       19       810       311       1012         61       12       73       124       55       106       37       88       29       910       411       112         71       22       83       14       65       116       47       98       39       1010       511       1212         81       32       93       24       75       126       57       108       49       110       611       112         91       42       103       34       85                                                                                                             |     |     |     |     |     |     |     |     |     |      |      |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21         92         33         84         15         66         117         48         109         510         211         712           31         102         43         94         25         76         127         58         119         610         111         812           41         112         53         104         35         86         17         68         129         710         211         912           51         122         63         114         45         96         27         78         19         810         311         1012           61         12         73         124         55         106         37         88         29         910         411         112           71         22         83         14         65         116         47         98         39         1010         511         1212           81         32         93         24         75         126         57         108         49         110         611         112           91         42         103         34         85         16         67         118         59   | 11  | 82  | 23  | 74  | 125 | 56  | 107 | 38  | 99  | 410  | 1111 | 612  |
| 31         102         43         94         25         76         127         58         119         610         111         812           41         112         53         104         35         86         17         68         129         710         211         912           51         122         63         114         45         96         27         78         19         810         311         112           61         12         73         124         55         106         37         88         29         910         411         112           71         22         83         14         65         116         47         98         39         1010         511         1212           81         32         93         24         75         126         57         108         49         1110         611         112           91         42         103         34         85         16         67         118         59         1210         711         212           101         52         113         44         95         26         77         128         69 | 21  | 92  | 33  | 84  | 15  | 66  | 117 | 48  | 109 | 510  | 1211 | 712  |
| 41       112       53       104       35       86       17       68       129       710       211       912         51       122       63       114       45       96       27       78       19       810       311       1012         61       12       73       124       55       106       37       88       29       910       411       112         71       22       83       14       65       116       47       98       39       1010       511       212         81       32       93       24       75       126       57       108       49       1110       611       112         91       42       103       34       85       16       67       118       59       1210       711       212         101       52       113       44       95       26       77       128       69       110       811       312         111       62       123       54       105       36       87       18       79       210       911       412         121       72       13       64       115       <                                                                                                  | 31  | 102 | 43  | 94  | 25  | 76  | 127 | 58  | 119 | 610  | 111  | 812  |
| 51       122       63       114       45       96       27       78       19       810       311       1012         61       12       73       124       55       106       37       88       29       910       411       1112         71       22       83       14       65       116       47       98       39       1010       511       1212         81       32       93       24       75       126       57       108       49       1110       611       112         91       42       103       34       85       16       67       118       59       1210       711       212         101       52       113       44       95       26       77       128       69       110       811       312         111       62       123       54       105       36       87       18       79       210       911       412         121       72       13       64       115       46       97       28       89       310       101       512                                                                                                                                                          | 41  | 112 | 53  | 104 | 35  | 86  | 17  | 68  | 129 | 710  | 211  | 912  |
| 61       12       73       124       55       106       37       88       29       910       411       112         71       22       83       14       65       116       47       98       39       1010       511       1212         81       32       93       24       75       126       57       108       49       1110       611       112         91       42       103       34       85       16       67       118       59       1210       711       212         101       52       113       44       95       26       77       128       69       110       811       312         111       62       123       54       105       36       87       18       79       210       911       412         121       72       13       64       115       46       97       28       89       310       101       512                                                                                                                                                                                                                                                                               | 51  | 122 | 63  | 114 | 45  | 96  | 27  | 78  | 19  | 810  | 311  | 1012 |
| 71       22       83       14       65       116       47       98       39       1010       511       1212         81       32       93       24       75       126       57       108       49       1110       611       112         91       42       103       34       85       16       67       118       59       120       711       212         101       52       113       44       95       26       77       128       69       110       811       312         111       62       123       54       105       36       87       18       79       210       911       412         121       72       13       64       115       46       97       28       89       310       011       512                                                                                                                                                                                                                                                                                                                                                                                                   | 61  | 12  | 73  | 124 | 55  | 106 | 37  | 88  | 29  | 910  | 411  | 1112 |
| 81         32         93         24         75         126         57         108         49         110         611         112           91         42         103         34         85         16         67         118         59         1210         711         212           101         52         113         44         95         26         77         128         69         110         811         312           101         52         113         44         95         26         77         128         69         110         811         312           111         62         123         54         105         36         87         18         79         210         911         412           121         72         13         64         115         46         97         28         89         310         101         512                                                                                                                                                                                                                                                     | 71  | 22  | 83  | 14  | 65  | 116 | 47  | 98  | 39  | 1010 | 511  | 1212 |
| 91       42       103       34       85       16       67       118       59       1210       711       212         101       52       113       44       95       26       77       128       69       110       811       312         111       62       123       54       105       36       87       18       79       210       911       412         121       72       13       64       115       46       97       28       89       310       1011       512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81  | 32  | 93  | 24  | 75  | 126 | 57  | 108 | 49  | 1110 | 611  | 112  |
| 101         52         113         44         95         26         77         128         69         110         811         312           111         62         123         54         105         36         87         18         79         210         911         412           121         72         13         64         115         46         97         28         89         310         101         512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91  | 42  | 103 | 34  | 85  | 16  | 67  | 118 | 59  | 1210 | 711  | 212  |
| 111         62         123         54         105         36         87         18         79         210         911         412           121         72         13         64         115         46         97         28         89         310         011         512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101 | 52  | 113 | 44  | 95  | 26  | 77  | 128 | 69  | 110  | 811  | 312  |
| 121 72 13 64 115 46 97 28 89 310 011 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111 | 62  | 123 | 54  | 105 | 36  | 87  | 18  | 79  | 210  | 911  | 412  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121 | 72  | 13  | 64  | 115 | 46  | 97  | 28  | 89  | 310  | 1011 | 512  |

(b) 优化 TCT

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(c) 实际阴影分布

图 4 对称阵列阴影分布

Fig. 4 Shadows distribution of symmetric array

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 11  | 62  | 113 | 54  | 105 | 46  | 97  | 38  | 89  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 21  | 72  | 13  | 64  | 115 | 56  | 107 | 48  | 99  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 31  | 82  | 23  | 74  | 15  | 66  | 117 | 58  | 109 |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 41  | 92  | 33  | 84  | 25  | 76  | 17  | 68  | 119 |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 51  | 102 | 43  | 94  | 35  | 86  | 27  | 78  | 19  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 61  | 112 | 53  | 104 | 45  | 96  | 37  | 88  | 29  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 71  | 12  | 63  | 114 | 55  | 106 | 47  | 98  | 39  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 81  | 22  | 73  | 14  | 65  | 116 | 57  | 108 | 49  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 91  | 32  | 83  | 24  | 75  | 16  | 67  | 118 | 59  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 101 | 42  | 93  | 34  | 8.5 | 26  | 77  | 18  | 69  |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 111 | 52  | 103 | 44  | 95  | 36  | 87  | 28  | 79  |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

(a) TCT

(b) 优化 TCT

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |

(c) 实际阴影分布

图 5 不对称阵列阴影分布 Fig. 5 Shadows distribution of asymmetric array

针对对称阵列的遮挡特性,在不考虑温度变化 时,局部阴影下光伏组件的光生电流为:

$$I_{\rm sc0} = \frac{G}{1\,000} I_{\rm sc} \tag{1}$$

式中: *I*sc 为标准测试条件下光伏组件短路电流。当流过被遮挡组件的电流大于其光生电流时,组件被旁路二极管短路,两端电压为旁路二极管导通压降的反压。由于二极管导通压降远小于阵列电压,可不予以考虑。对于 SP 结构,12 列组件遮挡状况一致,每列有相同的工作状态。假设流经每列组件串的电流为 *I*,在 STC 下组件光生电流约为短路电流 *I*sc,被遮挡组件的光生电流则为 0.1*I*sc,光伏组件的最大功率点电压为 V<sub>mpp</sub>,则 0.1*I*sc <*I* <*I*sc 时,局部最大功率约为:

$$P_{\rm a} = I_{\rm sc} \times 9 \,\rm V_{\rm mpp} \tag{2}$$

http://www.china-simulation.com

https://dc-china-simulation.researchcommons.org/journal/vol31/iss4/25 DOI: 10.16182/j.issn1004731x.joss.17-0142

| 第 31 卷第 4 期 | 系统仿真学报                       | Vol. 31 No. 4 |
|-------------|------------------------------|---------------|
| 2019年4月     | Journal of System Simulation | Apr., 2019    |

当
$$I \leq 0.1I_{sc}$$
,局部最大功率约为:  
 $P_a = 0.1I_{sc} \times 12V_{mpp}$  (3)

则 SP 结构的光伏阵列全局最大功率约为:

$$P = 12 \times I_{\rm sc} \times 9V_{\rm mpp} = 108I_{\rm sc}V_{\rm mpp} \tag{4}$$

对于 TCT 结构,每行组件并联连接,则阵列 行电流分别为:

$$I_1 = I_2 = I_3 = I_4 = I_5 = I_6 = I_7 = I_8 = I_9 = 12I_{sc}$$
(5)

$$I_{10} = I_{11} = I_{12} = 1.2I_{\rm sc} \tag{6}$$

流过阵列的电流为 12*I*<sub>sc</sub>时,第 10、11、12 行 组件被旁路,此时阵列电压约为 9*V*<sub>mpp</sub>。而阵列电 流为 1.1*I*<sub>sc</sub>时,阵列电压约为 12*V*<sub>mpp</sub>,因此,全局 最大功率约为 108*I*<sub>sc</sub>*V*<sub>mpp</sub>。

优化配置的 TCT 结构使得每行阴影均匀分 布。每行电流 *I* 均为:





此时仅有全局最大功率点:

$$P_{\rm a} = 9.3I_{\rm sc} \times 12V_{\rm mpp} = 111.6I_{\rm sc}V_{\rm mpp} \tag{8}$$

图 6 为 3 种结构的 P-V 特性曲线。对于不对称阵列的遮挡特性,其分析方法与对称阵列相同。 SP 结构和 TCT 结构的全局最大功率点皆为 72*I*scVmpp,优化配置后的 TCT 结构的全局最大功率 略低于 SP、TCT 结构,为 69.3*I*scVmpp,其原因是 有 5 行存在 3 个组件被遮挡、有 6 行存在 2 个组件 被遮挡。但减小了局部最大功率点间的落差,降低 了最大功率点搜索的难度。图 7 为不对称阵列的 P-V 特性曲线。

#### 2.1.2 不同阴影图案下性能分析

不对称阵列的短窄型阴影、长宽型阴影、长窄 型阴影、对角线型阴影的分布如图 8(a)~(d)所示。 对称型阵列的阴影分布如图 9(a)~(d)所示。



图 7 不对称阵列 P-V 特性曲线 Fig. 7 PV curve of asymmetric array

11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 29 21 22 23 24 25 26 27 28 21 22 23 24 25 26 27 28 29 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 38 39 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 41 42 43 44 45 46 41 42 43 44 45 46 47 48 49 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 52 53 54 55 56 51 52 53 54 55 56 51 52 53 54 51 57 58 59 61 62 63 64 65 66 67 68 69 61 62 63 64 65 66 61 62 63 64 65 66 61 62 63 64 69 71 72 73 74 75 76 77 78 72 73 74 75 76 71 72 73 74 75 76 77 78 71 78 71 72 73 74 75 77 78 79 81 82 83 84 85 86 87 88 89 81 82 83 84 85 86 87 88 89 81 82 83 84 85 86 81 82 83 84 85 87 88 91 92 93 94 95 96 97 98 99 91 92 93 94 95 96 97 98 91 92 93 94 95 96 97 98 99 91 92 93 94 95 96 97 98 99 101 102 103 104 105 106 107 108 109 101102103104105106107108109 101102103104105106107108109 101102103104105106 07108109 112113114115116117118119 11111211311411511611711811 111112113114115116117118 111112113114115116 (a) 短窄型 (b) 长宽型 (d) 对角线型 (c) 长窄型 图 8 不对称阵列不同阴影图案分布图

Fig. 8 Shadows distribution of asymmetric array

第 31 卷第 4 期 2019 年 4 月

夏永洪,等:阴影下不同光伏阵列结构输出性能对比与分析

Vol. 31 No. 4 Apr., 2019

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

|     | _   |     |     |     |     |     |     |     |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |
|     |     |     |     |     |     |     |     |     |      |      |      |

| (a) | 短窄型 |  |
|-----|-----|--|
|     |     |  |

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(b) 长宽型

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(c) 长窄型

(d) 对角线型

表 3 对称阵列最大功率点

图 9 对称阵列不同阴影图案分布图 Fig. 9 Shadows distribution of symmetric array

3种阵列不同阴影下最大功率点数据如表 2~3

|      |                          |                              |                      | Tab. 3  | b. 3 Maximum power point of symmetric array |         |           |  |  |
|------|--------------------------|------------------------------|----------------------|---------|---------------------------------------------|---------|-----------|--|--|
| 所示。  |                          |                              |                      | 米王      | SP 最大功                                      | TCT 最大  | 优化 TCT 最  |  |  |
|      |                          |                              | Þ                    | <b></b> | 率点/W                                        | 功率点/W   | 大功率点/W    |  |  |
| Tab. | 表 2 不对称<br>2 Maximum pow | 「阵列最大切率<br>ver point of asyn | · 点<br>nmetric array | 短宽型     | 23 581                                      | 23 205  | 25 226    |  |  |
|      | SP 最大功                   | TCT 最大                       | 优化 TCT 最             | 短窄型     | 21 898                                      | 21 327  | 27 200    |  |  |
| 类型   | 率点/W                     | 功率点/W                        | 大功率点/W               | 长宽型     | 18 631                                      | 17 389  | 20 307    |  |  |
| 短宽西  | 원 17 450                 | 17 450                       | 17 256               | 长窄型     | 27 127                                      | 27 761  | 28 059    |  |  |
| 短窄型  | 관 14 626                 | 15 639                       | 19 206               | 对角线型    | 24 533                                      | 26 251  | 28 238    |  |  |
| 长宽型  | 관 12 698                 | 12 329                       | 13 448               |         |                                             |         |           |  |  |
| 长窄型  | 일 16 766                 | 17 219                       | 17 587               | 由表 2    | 2 可知,在不                                     | 对称型阵列   | 中,SP 结构在  |  |  |
| 对角线  | 型 15 399                 | 14 813                       | 13 894               | 对角线型于   | 「输出功率最                                      | 高,比 TCT | 结构高 2.4%, |  |  |

| 第 31 卷第 4 期 | 系统仿真学报                       | Vol. 31 No. 4 |
|-------------|------------------------------|---------------|
| 2019年4月     | Journal of System Simulation | Apr., 2019    |

比优化 TCT 结构高 6.2%。优化 TCT 结构在短窄 型、长宽型、长窄型阴影下输出功率最高,分别比 SP 结构高 18.9%、3.1%、3.4%, 比 TCT 结构高 14.7%、4.6%、1.5%。

而在对称型阵列中,优化 TCT 结构在 5 种阴 影图形下的输出功率皆最高。在短宽型、短窄型、 长宽型、长窄型、对角线型的阴影下分别比 SP 结构 高 4.7%、15%、4.8%、2.6%、10.5%,比 TCT 结构 高 5.7%、16.6%、8.3%、0.8%、5.6%,如表 3 所示。

因此,相对于传统的 SP 结构、TCT 结构,优 化 TCT 结构总体上能更好的削弱遮阴影响下的功 率损耗,在大部分阴影场景下都有良好的功率提升。

# 2.2 辐照不均时光伏阵列输出性能

当光伏阵列上存在几种不同辐照度时,易导致 多个局部最大功率点的出现,为分析阵列输出情 况,设置了5种阴影图形。不对称阵列短宽型阴影 如图 10 所示。短窄型、长宽型、长窄型、对角线 型阴影的分布如图 11(a)~(d)所示。

对称型阵列的 5 种阴影图形见图 12。在此情 况下,3种结构的最大功率点分别如表4~5所示。



#### (a) 重构 TCT

图 10 不对称阵列短宽型阴影分布图



|     |         |     |     |     |     |     |     |     |   |     |     |          |     |         |     |     |     | _  |
|-----|---------|-----|-----|-----|-----|-----|-----|-----|---|-----|-----|----------|-----|---------|-----|-----|-----|----|
|     |         |     |     |     |     |     |     |     |   |     |     |          |     |         |     |     |     |    |
| 11  | 12      | 13  | 14  | 15  | 16  | 17  | 18  | 19  |   | 11  | 12  | 13       | 14  | 15      | 16  | 17  | 18  | 19 |
| 21  | 22      | 23  | 24  | 25  | 26  | 27  | 28  | 29  |   | 21  | 22  | 23       | 24  | 25      | 26  | 27  | 28  | 29 |
| 31  | 32      | 33  | 34  | 35  | 36  | 37  | 38  | 39  |   | 31  | 32  | 33       | 34  | 35      | 36  | 37  | 38  | 39 |
| 41  | 42      | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 1 | 41  | 42  | 43       | 44  | 45      | 46  | 47  | 48  | 49 |
| 51  | 52      | 53  | 54  | 55  | 56  | 57  | 58  | 59  |   | 51  | 52  | 53       | 54  | 55      | 56  | 57  | 58  | 59 |
| 61  | 62      | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 1 | 61  | 62  | 63       | 64  | 65      | 66  | 67  | 68  | 69 |
| 71  | 72      | 73  | 74  | 75  | 76  | 77  | 78  | 79  |   | 71  | 72  | 73       | 74  | 75      | 76  | 77  | 78  | 79 |
| 81  | 82      | 83  | 84  | 85  | 86  | 87  | 88  | 89  |   | 81  | 82  | 83       | 84  | 85      | 86  | 87  | 88  | 89 |
| 91  | 92      | 93  | 94  | 95  | 96  | 97  | 98  | 99  |   | 91  | 92  | 93       | 94  | 95      | 96  | 97  | 98  | 99 |
| 101 | 102     | 103 | 104 | 105 | 106 | 107 | 108 | 109 |   | 101 | 102 | 103      | 104 | 105     | 106 | 107 | 108 | 10 |
| 111 | 112     | 113 | 114 | 115 | 116 | 117 | 118 | 119 |   | 111 | 112 | 113      | 114 | 115     | 116 | 117 | 118 | 11 |
|     |         |     |     |     |     |     |     |     |   |     |     | <u>a</u> |     | . स्टेस | Ŧd  |     |     |    |
|     | (a) 短窄型 |     |     |     |     |     |     |     |   |     |     | (b)      | りた  | 、宂      | 空.  |     |     |    |

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |

|     | (6) 以见主 |     |     |     |     |     |     |     |  |  |  |  |  |
|-----|---------|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| 11  | 12      | 13  | 14  | 15  | 16  | 17  | 18  | 19  |  |  |  |  |  |
| 21  | 22      | 23  | 24  | 25  | 26  | 27  | 28  | 29  |  |  |  |  |  |
| 31  | 32      | 33  | 34  | 35  | 36  | 37  | 38  | 39  |  |  |  |  |  |
| 41  | 42      | 43  | 44  | 45  | 46  | 47  | 48  | 49  |  |  |  |  |  |
| 51  | 52      | 53  | 54  | 55  | 56  | 57  | 58  | 59  |  |  |  |  |  |
| 61  | 62      | 63  | 64  | 65  | 66  | 67  | 68  | 69  |  |  |  |  |  |
| 71  | 72      | 73  | 74  | 75  | 76  | 77  | 78  | 79  |  |  |  |  |  |
| 81  | 82      | 83  | 84  | 85  | 86  | 87  | 88  | 89  |  |  |  |  |  |
| 91  | 92      | 93  | 94  | 95  | 96  | 97  | 98  | 99  |  |  |  |  |  |
| 101 | 102     | 103 | 104 | 105 | 106 | 107 | 108 | 109 |  |  |  |  |  |
| 111 | 112     | 113 | 114 | 115 | 116 | 117 | 118 | 119 |  |  |  |  |  |

(c) 长窄型

(d) 对角线型

图 11 不对称阵列阴影分布图 Fig. 11 Shadows distribution of asymmetric array

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(a) 短宽型

#### 夏永洪,等:阴影下不同光伏阵列结构输出性能对比与分析

Vol. 31 No. 4 Apr., 2019

|     |     |     |     |     |     |     |     | _   |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

#### (b) 短窄型

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(c) 长宽型

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

(d) 长窄型

| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 110  | 111  | 112  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 210  | 211  | 212  |
| 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 310  | 311  | 312  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 410  | 411  | 412  |
| 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 510  | 511  | 512  |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 610  | 611  | 612  |
| 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 710  | 711  | 712  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 810  | 811  | 812  |
| 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 910  | 911  | 912  |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | 1011 | 1012 |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 1110 | 1111 | 1112 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 1210 | 1211 | 1212 |

#### (e) 对角线

#### 图 12 对称阵列阴影分布图

Fig. 12 Shadows distribution of symmetric array

表 4 不对称阵列最大功率点

| Tab. 4 | Maximum power point of asymmetric array |        |         |  |  |  |  |  |
|--------|-----------------------------------------|--------|---------|--|--|--|--|--|
| 米王     | SP 最大功                                  | TCT 最大 | 优化TCT最大 |  |  |  |  |  |
| 天空     | 率点/W                                    | 功率点/W  | 功率点/W   |  |  |  |  |  |
| 短宽型    | 17 492                                  | 17 470 | 19 351  |  |  |  |  |  |
| 短窄型    | 17 585                                  | 16 345 | 20 379  |  |  |  |  |  |
| 长宽型    | 15 008                                  | 15 027 | 15 810  |  |  |  |  |  |
| 长窄型    | 16 919                                  | 18319  | 19 569  |  |  |  |  |  |
| 对角线型   | 15 399                                  | 15 831 | 17 119  |  |  |  |  |  |

#### 表 5 对称阵列最大功率点

| Tab. 5 | Maximum power point of symmetric array |         |          |  |  |  |  |  |
|--------|----------------------------------------|---------|----------|--|--|--|--|--|
| 米王     | SP 最大功                                 | TCT 最大功 | 优化 TCT 最 |  |  |  |  |  |
| 尖型     | 率点/W                                   | 率点/W    | 大功率点/W   |  |  |  |  |  |
| 短宽型    | 23 527                                 | 23 206  | 28 343   |  |  |  |  |  |
| 短窄型    | 26 385                                 | 25 050  | 30 166   |  |  |  |  |  |
| 长宽型    | 19 365                                 | 18 140  | 22 622   |  |  |  |  |  |
| 长窄型    | 27 452                                 | 29 234  | 30 557   |  |  |  |  |  |
| 对角线型   | 24 534                                 | 28 474  | 30 164   |  |  |  |  |  |

由表 4~5 可知,当光伏阵列上存在渐变的辐照 度时,优化 TCT 配置的光伏阵列输出功率总是最 高。不对称光伏阵列在短宽型阴影下,优化 TCT 结构输出功率分别高于 SP、TCT 结构 7.7%、7.8%, 短窄型阴影下分别高 11.5%、16.6%,长宽型阴影 下分别高 3.3%、3.2%,长窄型阴影下分别高 10.9%、 5.2%,对角线型阴影下分别高 7.1%、5.3%。

对称光伏阵列在短宽型阴影下,优化 TCT 结

| 第 31 卷第 4 期 | 系统仿真学报                       | Vol. 31 No. 4 |
|-------------|------------------------------|---------------|
| 2019年4月     | Journal of System Simulation | Apr., 2019    |

构输出功率分别高于 SP、TCT 结构 13.7%、14.6%, 短窄型阴影下分别高 10.7%、14.5%,长宽型阴影 下高 9.2%、12.7%,长窄型阴影下分别高 8.8%、 3.8%,对角线型阴影下分别高 16.0%、4.8%。因 此,优化配置的 TCT 结构更适合于多辐照度的光 伏阵列。

# 3 结论

围绕阴影下不同阵列结构的输出性能进行研究,在5种阴影模式下,针对传统SP结构、TCT 结构和优化TCT结构的光伏阵列输出能力进行了 详细的分析,同时利用Matlab/Simulink软件进行 了仿真。结果表明:对于建筑物造成的辐照度单一 的阴影,采用优化TCT结构的光伏阵列性能整体 上有较好的提升,对于云层、树木等造成的连续渐 变的阴影,无论是对称光伏阵列还是不对称光伏阵 列,采用优化TCT结构比传统的SP结构和TCT 结构输出的功率更高。

# 参考文献:

- 丁明,陈中. 遮阴影响下的光伏阵列结构研究[J]. 电 力自动化设备, 2011, 31(10): 1-5.
   Ding Ming, Chen Zhong. Reconfiguration of partially shaded photovoltaic array[J]. Electric Power Automatic Equipment, 2011, 31(10): 1-5.
- [2] PICAULT D, RAISON B, BACHA S, et al. Changing photovoltaic array interconnections to reduce mismatch losses: a case study[C]// International Conference on Environment and Electrical Engineering, 2010: 37-40.
- [3] 丁坤, 王祥, 徐俊伟, 等. 常见光伏阵列拓扑结构分析
   [J]. 电网与清洁能源, 2014, 30(3): 114-118.
   Ding Kun, Wang Xiang, Xu Junwei, et al. Topological Analysis of Common PV Arrays[J]. Power System and

Clean Energy, 2014, 30(3): 114-118.

- [4] Cheng Ze, Pang Zhichao, Liu Yanli, et al. An adaptive solar photovoltaic array reconfiguration method based on fuzzy Control[C]// Proceedings of the 8th WCICA, 2010: 176-181.
- [5] 李锐华, 闫宇星, 胡波. 阴影遮蔽条件下光伏阵列的 可重构优化配置方法[J]. 电网与清洁能源, 2014, 30(7): 38-44.

Li Ruihua, Yan Yuxing, Hu bo. Reconfigurable optimization arrangement method of photovoltaic arrays in partial shade condition[J]. Power System and Clean Energy, 2014, 30(7): 38-44.

[6] 孙自勇, 宇航, 严干贵, 等. 基于 PSCAD 的光伏阵列 和 MPPT 控制器的仿真模型[J]. 电力系统保护与控制, 2009, 37(19): 61-64.
Sun Ziyong, Yu hang, Yan Gangui, et al. PSCAD simulation models for photovoltaic array and MPPT controller[J]. Power System Protection and Control,

[7] Rani B I, Ilango G S, Nagamani C. Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration[J]. IEEE Trans. Sustain Energy (S1949-3029), 2013, 4(3): 594-601.

2009, 37(19): 61-64.

- [8] Sahu H S, Nayak S K. Extraction of maximum power from a PV array under nonuniform irradiation condition, IEEE Transactions on Electron Devices (S0018-9383), 2016, 63(12): 4825-4831.
- [9] Sahu H S, Nayak S K. Power enhancement of partially shaded PV array by using a novel approach for shade dispersion[C]// Innovative smart grid technologies Asia (ISGT Asia), 2014: 498-503.
- [10] 蒋建东,花京东,李鲁霞.分布式光伏阵列重构拓扑 及控制方法[J]. 机电工程,2013,30(3):343-348.
  Jiang Jiandong, Hua Jinghua, Li Luxia. Reconfigure topology and control strategy of distribute photovoltaic array[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(3): 343-348.