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Abstract

Abstract: It is already proved that the traditional fixed time step lattice Monte Carlo (LMC) algorithm can
reproduce both the mean and the variance of the particle displacement exactly. However, there is always
a non-zero skewness when there is a drift. To further improve the accuracy, a new LMC algorithm of
biased diffusion model with five transition probabilities has been devised, which indeed reproduces the
first three moments exactly. The valid scope of lattice step and time step can be determined numerically
once the drift and the diffusivity are given. A new measurement is introduced to study the accuracy
characteristics of the new algorithm. As a result, a particular lattice step can be discovered in which case
the first step error is the maximum error in the simulation tests. Then, given the particular lattice step, the
optimal time step can also be found to minimize the maximum error.
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can reproduce both the mean and the variance of the particle displacement exactly. However, there is
always a non-zero skewness when there is a drift. To further improve the accuracy, a new LMC algorithm
of biased diffusion model with five transition probabilities has been devised, which indeed reproduces the
first three moments exactly. The valid scope of lattice step and time step can be determined numerically
once the drift and the diffusivity are given. A new measurement is introduced to study the accuracy
characteristics of the new algorithm. As a result, a particular lattice step can be discovered in which case
the first step error is the maximum error in the simulation tests. Then, given the particular lattice step, the
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Introduction difficult to get analytical solutions" or necessary to
track the trajectory of particles””. Generally, the
It is an efficient and important method to use mathematical foundation of the LMC simulation
LMC simulation for biased diffusion models when algorithm 1s based on the theory of random walks on
discrete lattices. The key of such algorithms is to find
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the algorithm is designed rationally and the lattice
step is small enough™.

For the Fokker-Planck equation, the LMC
algorithm with three transition probabilities has
already been devised although it cannot be extended
to the more general three dimensional case!®.
Moreover, it is already proved that the traditional
fixed time step LMC algorithm can reproduce both
the mean and the mean square displacement correctly
in the long time limit'”). However, it is also found that
the algorithm always produces a significant non-zero
skewness when there is a drift"®!. The error introduced
in the skewness converges to zero very slowly in the
long time limit™.

The accuracy of such LMC simulations tops in
the biased diffusion processes especially involving
simultaneous reactions or interactions between
particles’”.. However, the related work on accuracy of
the traditional algorithms is totally based on three
transition probabilities, which is not in accord with the
nature of biased diffusion!'”. Thus, more transition
probabilities are needed for the LMC algorithm of
biased diffusion models. For the convenience of
mathematical derivation and analysis, five transition
probabilities are considered in this paper.

For the purpose of the accuracy characteristics
of the new algorithm, this paper will only focus on
the one-dimensional Fokker-Planck equation with
constant drift and diffusivity. The paper is organized
as follows. In Section 1, the fundamental background
of the new fixed time step LMC algorithm, as well as
the transition probabilities, is given. The valid scope
of lattice step and time step is also discussed in this
section. Then a new accuracy measurement is
introduced to explore the potential accuracy
characteristics of the new algorithm. In Section 2,
some interesting and valuable features with the new
measurement are  found

accuracy through
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Journal of System Simulation

Vol. 29 No. 10
Oct., 2017

emphatically studying several carefully-choosing
diffusion models. In Section 3, some conclusions and
the related work of the accuracy characteristics are

briefly summarized.

1 The new LMC algorithm and its
accuracy measurement

One-dimensional Fokker-Planck equation with

constant drift g and diffusivity D can be formulated as

0 0 0*
— p(X,t)=—q— p(X,t) + D— p(x,t 1
o p(x,t)=—q ™ p(X,1) + v p(X,1) (1)

The analytical solution is

B S G Ul Vi
p(X,t)— mexp( 4Dt \J (2)

with the initial condition p(X,t=0)=&X), where Jis the
Dirac delta function. The mean g, the variance o and
the skewness 77 of the distribution are

u=0qt,oc” =2Dt,n=0 3)

Consider a random walk that hops between its
neighboring five sites on a one-dimensional lattice
and suppose the lattice step is /. Suppose each
particle can stay put or jump to its nearby sites by one
or two lattice steps with constant probabilities on
discrete fixed time steps. Let p, be the probability
to stay put and p;,i=+1,£2 be the probability of
jumping to its nearby sites by i lattice steps.

According to our derivation, the five

probabilities are

P=
—°T? +(-0*(—6qD)T* +(4q¢* —2DNT 2
qT +(-q°(-6q )3 (49 ) a-p) @
6/ 3
P =
O’T? +(-q*¢+6qD)T? — (490> +2DOT 2
3 +—(1=py) (5)
60 3
P, =
O’T° + (2920 +60D)T? +(—-q¢* +4DNOT 1
3 ——(1=py) (6)
120 6
P, =
—’T? +(29*( - 6qD)T? +(q¢* +4DOT 1
q (29 ?25)3 (q ) —g(l—po)(7)
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p, =1—4nD? cosh(ﬁJ —2n 51211(2rm/22)2 x Po =Py =1/2¢ (13)

D)5 a"D°n" +q~/¢ plzl—l/af (14)

2202 422
{l_exp(%ﬁng} (8)

Clearly, to make the probabilities meaningful,
there must be

0<p; <Li=0,£1,+2 9)

Consequently, the lattice step and the time step
are constrained by Eq. (9), which guarantees that the
algorithm is valid. Further, it is known that p; is
always meaningful for any lattice step and time step.

It is also found that there exist maximums for
both lattice step and time step, namely ¢, and
T

max °

which are determined by the special case

P =p,=0 (10)

Then, we can obtain

Ty = 2z =206 (1)
q q

» nsin( B 5 2 B
A PR o SN | B S SO
o4& +mn 2 & 8n& cosh(é)
where &=/_,0/(2D).
Eq. (12) can be solved numerically and a valid

algorithm can always be derived for this special case.

Then, another three transition probabilities are

For more general cases, the scope of valid lattice
step and time step can be calculated numerically. The
plot of the scope is shown in Fig. 1 for some typical
biased diffusion models. Note the log-log scale is used.
g and D are marked in the parenthesis. The typical
models are selected carefully on the ratio of D/g. The
values of the ratio can take 0.1, 1 and 10. The value,
0.1 (10), means that the drift (the diffusivity) is
dominant, while 1 indicates that the drift and the
diffusivity occupy the same weight in the diffusion
models. Then, the values of q and D are all chosen
from 0.1, 1 and 10, which would be easier to
investigate the effect of g or D on the scope of lattice
step and time step, according to the principle of
controlling variable method.

It indicates that both the maximum lattice step
and the maximum time step are just determined by Eq.
(10). The maximum lattice step only depends on D/q.
For any valid lattice step, valid time step can always
be found. Although its lower bound is always
determined by p_,, its upper bound is determined by

either p, or p_,.

100 -

0.1

4
0.001

0.000 11

0.000 01 .

0.01 0.1

Fig. 1 Scope of valid lattice step and time step
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For the accuracy of the one-dimensional fixed
time step LMC simulation, three main quantitative
estimates are discussed concretely in Refl[8]. It
indicates that the first one is always nonzero in
principle for any positive lattice step, no matter how
accurate the algorithm is. While the error of the
second one can actually be zero, if the number of
particles in each site is correct. The third one is
proposed through the second one divided by the
lattice step. However, the lattice step cannot be given
the specific mathematical formula for more general
cases. Then it is less meaningful to use the third one
than the second. Thus, to discover the accuracy
characteristics of the new algorithm, it is more

advisable!™ to employ the second one

At=NT+H) =
1
2)>
- i€+§—NqT i—ngT
@ ) — Pt
2| ot Jnor | TEY| ()

where P(i, t) is the ratio between particle number at
site 1 and the total particle number of all sites; @ is
the cumulative distribution function of the standard
normal distribution and the “+” sign in t=NT+
indicates that all the quantities are measured after the
jump, rather than before.

For the special case p_, = p_, =0, according to
Egs. (11) and (12), the error defined by Eq. (15) can

be formulated as

ANt=NT+H)=

N =

- (i+%—N)\/E q)(i—;—N)\/E "
i; N N -n(NT)| + (16)

Upon using the combined generating function
and Fourier transform on the master equation, we

obtain

RGN HR
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i
P m o 2N-2m—i . i-N+m
NIp, Py P,

nt=NTH= >

o MCN —2m =)l =N +m)!

'\f (E—1)PN2mi N

om0 22 ENMI2N = 2m—i)!i — N +m)!

a7
where n,(t) is the mean particle number at site i.

2 Numerical results

According to Egs. (4)~(14), it is not difficult to
implement the LMC simulation algorithm of the
one-dimensional biased diffusion model with
Wolfram Mathematica 8 and Visual Studio 2012. The
simulation algorithm is based on the master equation

M(t+T)=pom (1) + p_ni (1) + PN, () +

PN (0) + PN, (D). (18)

According to Eq. (15), the plot of the errors,
calculated by A as a function of the number of
simulation steps with g=1 zm/s and D=1 ymz/s, is in
Fig. 2. ¢ and T are marked in the parenthesis.

Note the special case is marked by ¢, and T, .

The subplot reveals the details of A with large
number of simulation steps. The logarithmic scale is
only used for number of steps in the plot, while the
log-log scale is used in the subplot.

To facilitate the accuracy analysis, the values of
the lattice step can take 0.1, 0.2, 0.4 and /7, .
According to the former theoretical analysis, if the
lattice step is less than its maximum, a valid scope of
time step can always be found and calculated
numerically. Given the lattice step, the values of the
time step are always selected starting from its scope’s
lower bound. Then, the results of ten representative
models are shown in the plot. Although the errors
exhibit rather complicated behavior regarding number
of simulation steps, some underlying information
about A can still be discovered.

Through the subplot, it indicates that the errors
fit well to the power law in the N—oo limit. In
addition, it is found that the differences of power
exponents between different models are pretty small,

so the curves seem parallel to each other.
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Fig. 2  Errors calculated by A versus number of simulation steps with g=1 zm/s, D=1 pum?/s

For the special case, it is found that no matter
what the drift and the diffusivity are, errors calculated
by A always behave in the same way as shown in Fig.
2. It clearly shows that the errors decrease
monotonically, so the first step error (Ag) is just the
maximum error (Apy), which is about 0.175 55. For
more general cases, several representative models
have been studied deeply. According to Fig. 2, given
the lattice step, it is observed that some a valid time
step can be searched out to make Ar be Ap.
Furthermore, it can be seen that An,, with the time step
taking its lower bound, gradually becomes the fourth,
third, second, first step error with the lattice step

taking 0.1, 0.2, 0.4, ¢, in turn. Consequently, it

X
naturally leads to the fact that a particular lattice step,
namely /i*, can be found out so that Ag is just Ap.
Moreover, it is inspiring to search out the particular
lattice steps regarding several typical cases, which

greatly validates the fact.

For the accuracy of the new fixed time step
LMC algorithm simulation, it would be more
interesting to investigate into Ap. Thus, it is worthy of
plotting A, versus time step in Fig. 4 to study some
potential properties, based on several representative
models with q={0.1,1,10} zm/s, D={0.1,1,10}zm?/s
and the particular lattice steps. Note the time step of
each model is calculated numerically.

According to Fig. 3, it seems that the trend of A,
has nothing to do with the drift and the diffusivity,
and is always presented in the shape of “V”’, when the
particular lattice steps are used in the biased diffusion
models. As a result, an optimal time step, namely T,
can always be found to make Ay, reach its minimum
(approximately 0.04). Since it is hard to get more
information about ¢° and Top by mathematical
analysis, two empirical formulas are obtained, which

are (*=0.8D/q and Top =0.29D/q*> based on the

data from a large number of simulation tests.
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Fig. 3 Maximum errors calculated by A versus time step.
If considering the parameter /¢q/(2D), i.e., the _p X2
g the p 9/@2D), Le. R R ) (19)
Péclet number, it can be found that the maximum
] ) X 1
error at optimal time step and the error at any P, =P :g_g(l— Po) (20)
simulation step are less than those (the maximum 42
error is about 0.05) in traditional algorithm. Po=1 __Z

Given that Ay, concerns us a lot and may lead to
some unexpected properties, then the plot of Ap
versus time step with g=1 pm/s, D=1 umz/s and
(=40, 20 002,07 14,07 18,07 /16,07/32,0" /643 um
is drawn in Fig. 4. The lattice steps are shown beside
each curve. Note that all the minimums of A, are

marked particularly with circle or square.

According to Fig. 4, it clearly indicates that an
optimal time step can always be found to minimize
An, for any valid lattice step. Looking into the relation
between the minimum error and the lattice step, we
can get such a judgment that the minimum error does
not approach zero, but closes to some a specific

positive in the ¢ — 0 limit.

Likewise, it is worth considering the

performance of error defined by A in the q—0 limit.
It is easy to get

particles jump

n=lI

where x=DT/¢*.

. 2.2
sin(n7m/2) l:l 3 exp[— mn
n 4

XH (21)

N A
03528 /0 ;
\ g b \.
/, N \
\\ Il \v \‘ \\\ Cmax
. 0.088F i ' PR
< i I 11
i! i | " L Y
i r*
0.0221 & 0 E |
[*/64 | ; LY}
* b | : )
0.005 5 T2 nslersi o .
“70.0000 1 0.0002 0.002 0.02 0.2 2
Time step/T’

with g=1 pm/s, D=1 pm?/s

Fig. 4 Maximum errors calculated by A versus the time step

It agrees with our common sense that the

to right and left

with

same

probabilities when the velocity is zero. It is surprising

to see the diffusivity, the time step and the lattice step
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are coupled together. But judging from the
dimension, X is just a scalar, containing no specific
physical meaning at present.

To make p;,i =0,£1,£2 meaningful, the scope
of X can be calculated numerically. Then the plot of A

versus X is shown in Fig. 5.

1

0.1 \\\ /’“MMM

< \{
0.01 - J first step error
o maximum error
0.001 . . —
0 0.5 1 1.5 2

Fig. 5 First step error and maximum error calculated by
A versus X in the g—0 limit

According to Fig. 5, the trends of first step error
and maximum error are similar to the cases of
non-zero velocity and the lattice step which is smaller
than the particular lattice step. Clearly, it can be
found that the two curves overlap at X=0.18. This
means that A only decreases monotonically when
x>0.18. Otherwise, A is nonmonotonic. Moreover, it
is observed that the optimal X (approximately 0.47),
leads to the minimum of Ay, which is about 0.005 973.

3 Conclusions

In summary, although we have devised the new
algorithm with five transition probability and have
proved that the first three moments of the distribution
can all be reproduced exactly, the accuracy of the
new fixed time step LMC simulation can never be a
trivial matter. Instead, it is significant to probe into
the characteristic of the accuracy measured by
different criterions, since the different criterions will
be appropriate for different purposes or make sense in
different contexts™, such as the accuracy
measurement defined by A.

On the one hand, according to our numerical
results, it clearly shows that a particular lattice step can
be found in which case the first step error equals the

maximum error. More importantly, we sum up two

empirical formulas of the particular lattice step and the
optimal time step, which fit well in many different
models. The formulas are valuable to us as they
provide a more simple and feasible way to select the
lattice step and the time step for more general cases
instead of calculating numerically. Besides, they
themselves represent considerably specific meanings.
On the other hand, the new fixed time step LMC
algorithm with more transition probabilities indeed
improves the accuracy compared with traditional
algorithm. But the improvement does not seem
significant on the numerical results as we expected,
which is more likely caused by the round-off errors

introduced in the iterative calculations.
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