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Introduction algorithm for single-hidden-layer feedforward neural

networks proposed by Huang, et al*?. In ELM, the

Extreme learning machine is a novel learning input weights and hidden biases are randomly
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Moore-Penrose (MP) generalized inverse. ELM

learns much faster with higher generalization

performance than the traditional gradient-based
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learning algorithms such as back-propagation and
Levenberg-Marquardt method. Also, ELM avoids
many problems faced by traditional gradient-based
learning algorithms such as stopping criteria, learning
rate and local minima problem. However ELM may
require  more hidden neurons than traditional
gradient-based learning algorithms and lead to
ill-conditioned problem because the input weights
and hidden biases are randomly selected.

In order to solve these problems, some
Optimization methods have been combined with
ELM for the training of SLFN. In Ref.[3], Zhu
proposed an evolutionary ELM (E-ELM) which
incorporates a widely used global searching method,
differential evolution (DE) to optimize the input
weights. Results show that the evolutionary ELM
achieves good generalization performance with more
compact networks.

In Ref.[4] a self-adaptive E-ELM (SaE-ELM)
which also uses DE to optimize the network
parameters is proposed. In this methodology the
generation strategies and control parameters of the
DE method are self-adapted by the optimization
method. SaE-ELM outperforms E-ELM in most test
cases.

In Ref.[5], a new learning framework called
optimized extreme learning machine (O-ELM) is
proposed. It uses optimization method to select not
only the input weights, the hidden biases, the
regularization factor but also the number of hidden
neurons, thus the network structure is also optimized.
Three optimization methods (GA, DE and Simulated
Annealing) are tested in the framework on some
benchmark regression problems and GA performs
better than DE and SA.

Recently, Particle Swarm Optimization (PSO)
has also been combined with ELM. PSO is a

E R
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population based stochastic optimization technique.
Compared with GA and DE, PSO has no complicated
evolutionary operators such as crossover and
mutation, and is easy to execute. Many researches
proved that PSO shows better performance in
complex optimization problems!®®.

In Ref. [9], an evolutionary ELM optimized by
PSO called PSO-ELM was proposed, and was
applied in a prediction task. In Ref. [10], an
Improved Extreme Learning Machine, IPSO-ELM,
which uses an improved PSO to select the input
weights and hidden biases of the SLFN was proposed.
The IPSO-ELM optimizes the input weights and the
hidden biases according to the RMSE on the
validation data set and the norm of the output weights.
Thus, IPSO-ELM algorithm can obtain good
performance with more
well-conditioned SLFN than E-ELM and PSO-ELMs.
However, the structure of SLFN is not optimized in
IPSO-ELM, the number hidden neurons needs to be

compact and

predefined by trials.

Although PSO outperforms GA and other
evolutionary algorithms in many applications, it
also has some limitations. PSO is not a global
optimization algorithm and has premature or local
convergence problems, as has been demonstrated
in Ref. [11]. To solve these problems, Sun et al.
(QPSO)

algorithm*2™¥. Experiments show that QPSO shows

proposed a quantum-behaved PSO
better convergence performance than standard PSO,
GA and some other algorithms in solving typical
benchmark optimization problems>¢!,

The optimization of SLFN parameters is a very
tough task as there are too many parameters to be
optimized simultaneously. In order to optimize the
network parameters more effectively, in this paper, a
novel hybrid learning algorithm called QPSO-ELM

http: // www.china-simulation.com
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which takes advantage of the global search B=[P. B, BT is the matrix of output weights

performance of QPSO is proposed. In the proposed
algorithm, QPSO is used to search not only the
optimal input weights and hidden biases, but also the
best network structure. Therefore, we can achieve a
more compact network without trial and error on the
best number of hidden neurons. Furthermore, on the
selection criteria of the optimization algorithms, we
consider both the fitness value on validation data set
and the norm of output weights to improve
generalization performance of the network. The
proposed algorithm was evaluated on both real-world
regression and classification problems.

The rest of the paper is organized as follows.
Section 2 gives a brief review of ELM. QPSO is
overviewed in Section 3. The proposed QPSO-ELM
is presented in Section 4. Section 5 gives the
and discussion on both

experimental  results

regression and classification problems. Finally

concluding remarks are drawn in Section 6.
1 Brief of extreme learning machine

Extreme learning machine (ELM) was proposed
by Huang, et al. For N arbitrary distinct
samples (x;,%) , where x; =[Xy, X, -, %,]" € R"
and ¢ =[t;, X, --.t;,]" € R™. Standard SLFN with
K hidden neurons and activation function g(x) can
approximate these N samples with zero error which
means that

HB=T 1)

where  H ={h;},(i=12,---,N andj=12,---,K)
is the hidden layer output matrix,
hij = g(wj - x; +bj) denotes the output of j-th hidden
neuron with respect to xj, wj =[Wj;,Wjz, -, Wj,]"
is the weight connecting j-th hidden neuron and input
neurons. b; denotes the bias of j-th hidden neuron.

And wj-x; is the inner product of w; and Xx;.

and B, :[ﬂjl,ﬁjz,...”gjm]T (j=1---,K) is the
weight vector connecting the j-th hidden neuron and
output neurons. And T =[t,t,,-,¢y]" is the
matrix of desired output.

Therefore, the determination of the output
weights is to find the least-square (LS) solutions to
the given linear system. The minimum norm LS
solution to the linear system (1) is

B=H'T @
where H™* is the MP generalized inverse of matrix
H. The minimum norm LS solution is unique and has
the smallest norm among all the LS solutions. ELM
uses MP

generalization

inverse method to obtain good

performance with  dramatically

increased learning speed.

2 Brief of quantum-behaved particle
swarm optimization

QPSO is a novel optimization algorithm inspired
by the fundamental theory of particle swarm and
features of quantum mechanics. It was initially
developed to deal with PSO’s main limitation of
pre-mature convergence. In QPSO, the state of a
particle y is depicted by Schrodinger wave function
w(y,t) , instead of position and velocity. The
dynamic behavior of the particle is widely divergent
from classical PSO systems in that the exact values of
position and velocity cannot be determined
simultaneously. It can be only learned that the
probability of the particle’s appearing in a position
from probability density function |t//(y,t)|2 , the form
of which depends on the potential field the particle
lies in. Employing the Monte Carlo method, for the
i-th particle y; from the population, the particle

moves according to the following iterative equation:

http: // www.china-simulation.com
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Vij(t+) =P ;(t) - B.(mBest;(t) - y; ; ().
In@/u; ;) ifk=0.5
i (t+1)= P ®) +ﬂ-(mBeStj ) —Jij 1)

| . ®)
n@/u ;) ifk<0.5

where y; ;(t+1) is the position of the i-th
particle with respect to the j-th dimension in iteration
t. B ; isthe local attractor of i-th particle to the j-th
dimension and is defined as

P (t) = ¢;(t).pBest; ; (t) + (1 ¢; (1) gBest(t)  (4)

1 NP
mBest(t)=—— > pBest, ;(t

i=1

where NP is the number of particles, pBest;
represents the best previous position of the i-th
particle. gBest is the global best position of the
particle swarm. mBest is the mean best position
defined as the mean of all the best positions of the
population, k, u and ¢ are random number
distributed uniformly in [0, 1] respectively. g is
called Contraction-Expansion coefficient. It can be
tuned to control the convergence speed of the

algorithms.
3 QPSO-ELM

In ELM, the output weights are computed based
on random input weights and hidden biases, there
may exist a set of non-optimal or even unnecessary
input weights and hidden neurons. As a result, ELM
may need more hidden neurons than conventional
gradient based learning algorithms and lead to an
ill-conditioned hidden output matrix, which would
cause worse generalization performance.

In this section, a new approach named
QPSO-ELM which combines QPSO and ELM is
proposed. Unlike some other evolutionary ELMs, our
proposed algorithm optimizes not only the input
weights and hidden biases using QPSO, but also the

structure of the neural network (hidden layer

E R
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neurons). And this helps the algorithm to achieve a
more compact network. The detailed steps of the
proposed approach are as follows:

Step 1 Initializing: Firstly, we generate the
population randomly. Each particle in the population
is constituted by a set of input weights, hidden biases
and s-variables.

P =[Wep e W By B e, S, 8¢

Where s; i=1,---,his a variable which defines
the structure of the network. As illustrated in Figure 1,
if s;=0, then the i-th hidden neuron is not
considered. Otherwise, if s =1, the i-th hidden
neuron is retained and the sigmoid function is used as
its activation function.

All components in a particle are randomly

initialized within the range [0, 1].

Fig. 1 Single hidden-layer feedforward network with
s-variable

Step 2 Fitness evaluation: The corresponding
output weights of each particle are computed
according to Equation (6). Then the fitness of each
particle is evaluated by the root mean square error
between the desired output and estimated output. To
avoid the problem of overfitting, the fitness
evaluation is performed on the validation data set

instead of the whole training data set
N, K
ZZﬂig(Wi Wi +b) -t

FO=\"— (6)

where N, is the number of samples in the

http: // www.china-simulation.com
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validation data set.

Step 3 Updating pBest;and gBest . with the
fitness values of all particles in population, the best
previous position for i-th particle pBest, and the
global best position gBest of each particle is updated.
However, using fitness value alone as the selection
criteria is not enough. As suggested in Ref. [3],
neural network tends to have better generalization
performance with the weights of smaller norm. In this
paper, the fitness value along with the norm of output
weights are considered together for updating

pBest; and gBest .The updating strategy is as

follows:

pi (f(pBest)— f(p;)>nf(pBest;))

or ( f (pBest;) — f (p)| <t (pBest,)
pBest, = @)

o [ < e
PpBest; else
pi (f(gBest)— f(p;)>nf(gBest))
or (| (gBest)— f(p;)| <nf(gBest) 8

gBest = 8)

10 oo | <o)
gBest else
where f(p;), f(pBest;) and f(gBest) are the
fitness function value of fitness value of the position
of the i-th particle, the best previous position of the
i-th particle and the global best position of the
are the

swarm.  wo, , Wwog and wo

gBest
corresponding output weights of the position of the
i-th particle, the best previous position of the i-th
particle and the global best position obtained by MP
inverse. In this way, particles with smaller fitness
values or smaller norms are more likely to be
selected as pBest; or gBest.

Step 4 calculates each particle’s local attractor
P. and mean best position mBest according to
equation (4) and (5).

Step 5 updates particle’s new position according

to equation (3)

Finally, we repeat Step 2 to Step 5 until the
maximum optimization iterations are completed.
Thus the network trained by ELM with the optimal
input weights and hidden biases are obtained, and
then the optimal network is applied to the benchmark
problems.

In the proposed algorithm, each particle
represents one possible solution to the optimization
problem and is a combination of components with
different meaning and different range.

All  components of a particle are firstly
initialized into the range [0, 1]. Therefore, before
calculating, corresponding output weights and fitness
evaluation in Step 2, they need to be converted to
their real value.

For the input weights and bias, they are given by

z; = (7™ - Zlmin)pij +zmin 9)

Where z™ =1and zM" =-1 are the upper
and lower bound for input weights and hidden bias
are.

For s-parameters, they are given by

z; = round (p; ) (10)

where round() is a function that rounds to the
nearest integer.

After the conversion of all variables, the fitness

of each individual can be evaluated.
4 Performance evaluation

This section presents performance evaluations of
QPSO-ELM on both benchmark regression problems
and classification problems. The performance of
QPSO-ELM is compared with ELM™, GO-ELM®,
and IPSO-ELM™™. Furthermore, in order to test how
network structure optimization improves the

IPSO-ELM
incorporating hidden neurons optimization strategy

(IPSO-ELM2) was tested on the same benchmark

generalization performance,

http: // www.china-simulation.com
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problems. The condition number is a parameter

All simulations have been made in Matlab
R2008a environment running on a PC with 2.5 GHz
CPU with 2 cores and 2 GB RAM. For the four
optimized ELMs, the population size and the
maximum number is very important. According to
our tests, the number of the population is set as 100
and the maximum number of iterations is 50. The
IPSO-ELMs and
QPSO-ELM include the norm of output weights as

selection criteria for the two

Equation (7) and (8). The selection criteria for
GO-ELM considers only the RMSE value or testing
accuracy on validation data set and does not include
the norm of output weights as suggested in Ref. [5].
GO-ELM

regularization in the least squares algorithm to

Instead, incorporates ~ Tikhonov's
improve the SLFN generalization capability.

In GO-ELM, the probability of crossover is 0.5
and the mutation probability is 10% as suggested in
Ref. [5]. In the two PSO-ELMs, the inertial weight is
set to decrease from 1.2 to 0.4 linearly with the
iterations as suggested in Ref. [10]. In QPSO-ELM,
the contraction-expansion coefficient £ is set to
decrease from 1.0 to 0.5 linearly with the iterations as
suggested in Ref. [13]. The initial number of hidden
neurons of all the optimized ELMs are set equal to
that of ELM for each benchmark problem.

All the five ELMs are run 20 times separately
for each benchmark problem and the results shown in
the tables are the mean and standard deviation
performance values in 20 trials. These performance
values include training and testing RMSE, (training
and testing accuracy for classification problems),
mean number of hidden neurons, norm of output
weights and condition number of hidden output

matrix.

qualitatively characterized the conditioning of a
matrix. It is a good indicator to show how close a
matrix is to be ill-conditioned. The smaller of the
condition number, the better of the conditioning of
matrix. It is given by
C(H) = [ (HTH)
Amin (HTH)
where A, (HTH) and A4, (HTH) are the

smallest and largest eigenvalues of the matrix
HTH

(11)

4.1 Evaluation on regression problems

4.1.1 Function approximation

In this section, all the algorithms are compared

on the approximation of the *SinC” function:
y_{sin(x)/x x#0

1 x=0 (12)

The training data set and testing data set have
5000 samples respectively and are available online™!.
Uniform noise randomly distributed in [-0.2, 0.2] has
already been added to all the training samples while
the testing data set remains noise-free. 20 hidden
neurons are assigned for ELM as suggested in Ref.
[2]. And the same is the initial number of hidden
neurons for the four optimized ELMs

To avoid the over-fitting problem, the fitness of
each particle is evaluated on the validation data set
instead of the whole training data set. In this paper,
40% of the training data set was randomly selected
and used as the validation data set and the left 60%
was used as the ‘actual’ training data set. Tab. 1
shows the average performance of the five algorithms
on ‘SinC’ function approximation problem. Fig. 1
shows the true and estimated output by QPSO-ELM

on testing data set.

http: // www.china-simulation.com
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Tab. 1 Performance of the five algorithms on “‘SinC’ function approximation problem

. L Training RMSE Testing RMSE . -
Algorithms  Training time(s) Hidden neurons Norm  Condition number
Mean Std Mean Std

ELM 0.047 0.1157 0.0012 0.00874 0.0019 20 3.843 e+6 8.162 e+9

IPSO-ELM 84.52 0.1152 0.0061 0.00835 0.0025 20 7.252 e+4 3.186 e+8

IPSO-ELM2 94.56 0.1150 0.0075 0.00801 0.0046 14.6 4.071 e+4 2.854 e+8

GO-ELM 115.23 0.1152 0.0043 0.00826 0.0127 15.3 6.254 e+4 3.766 e+8

QPSO-ELM 96.3 0.1149 0.0011 0.00735 0.0042 14.2 4.428 e+4 2.453 e+8

It can be concluded from Tab. 1 that all the
optimized ELMs obtain smaller mean RMSE values
with less hidden neurons than ELM. At the same time,
the norm of output weights and the condition number
of the hidden matrix H obtained by the optimized
ELMs are also smaller than those of ELM. This
indicates that optimization algorithms would help
ELM to attain a better generalization performance.
IPSO-ELM2, GO-ELM and QPSO-ELM all obtain
networks with fewer hidden neurons than ELM. This
is mainly because the optimization of network
structure helps them to achieve better performance
with a much more compact network.

Also it can be observed clearly that the training
time of ELM is much less than the optimized ones.
Much of training time of the optimized ELMs is
spent on evaluating all the individuals iteratively.

Among the four optimized ELMs, QPSO-ELM
obtains the best training and testing RMSE and the
condition number with the fewest hidden neurons.
This suggests that QPSO-ELM is superior to the
‘SinC’
approximation problem. Fig. 2 shows that the

other optimized ELMs on function
estimated output is in good consistent with the

desired output.
4.1.2 Real-world regression problems

The performances of all algorithms are also
compared on two real-world regression problems
from the UCI machine learning repository. They are
Boston Housing data set and Abalone data set.
Boston Housing data set concerns housing values in

suburbs of Boston. It has 13 attributes and 506
While
predicting the age of Abalone from 8 physical

instances. Abalone data set concerns
measurements and has 4177 instances. As there are
no separate training data set and testing data set
available for these two regression problems, for each
trial of simulations, we randomly select half of the
data as the testing data set and 20% of the data as the
validation data set, the left data is used as training

data set as suggested in Ref. [2].

1.2

— Estimated output

1Oy /f‘\ ---Desired output
0.8+1 /

0 1000 2000 3000 4000 5000
Samples

Fig. 2 Outputs of the QPSO-ELM learning algorithm on
*SinC’ problem

The performances of the five algorithms on
Boston Housing and Abalone problem are listed in
Tab. 2-3.

As observed form Tab. 2-3, all the optimized
ELMs need much more time than ELM which is
largely because of the iteration nature of GA, PSO
and QPSO. There is not much difference in training
time among the four optimized ELMs and GO-ELM
takes more time than the other three on both
problems.
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Tab. 2 Performance of the five algorithms on Boston Housing problem
. L Training RMSE Testing RMSE . -
Algorithms  Training time(s) Hidden neurons Norm Condition number
Mean Std Mean Std
ELM 0.039 0.1538 0.0080 0.2913 0.004 2 20 4563 e+7 6.104 e+10
IPSO-ELM 49.23 0.1429 0.0102 0.2281 0.0195 20 3.977 e+6 5.014 e+8
IPSO-ELM2 44.56 0.1243 0.0117 0.2194 0.0057 18.2 2.913 e+6 2.355e+8
GO-ELM 57.51 0.1261 0.0089 0.2475 0.009 3 18.5 3.232 e+6 4.156 e+8
QPSO-ELM 55.98 0.1192 0.0091 0.2086 0.0056 17.7 2.564 e+6 1.954 e+8
Tab. 3 Performance of the five algorithms on Abalone problem
. L. Training RMSE Testing RMSE . .
Algorithms  Training time(s) Hidden neurons Norm Condition number
Mean Std Mean Std
ELM 0.0934 0.0635 0.0089 0.0783 0.0056 20 315.24 5591.06
IPSO-ELM 179.53 0.0326 0.0128 0.0535 0.0042 20 151.87 2 056.31
IPSO-ELM2 185.60 0.0318 0.0097 0.0429 0.0044 18.1 122.39 1875.35
GO-ELM 205.24 0.0369 0.0207 0.0466 0.0185 17.6 156.45 2185.42
QPSO-ELM 198.91 0.0272 0.0084 0.0384 0.0052 17.9 93.60 1956.36
0 P PSO-ELM performs the best on Boston Housi
— Estimated Output Q - perrorms the pest on bOSton Fousing
50+ -~ Desired Output L data set.
|
= 40} In general, it can be concluded that QPSO-ELM
49' | i H . . H
8 30 f it is superior to the other optimized ELMs on these
| i il ' ,.‘ i real-world regression problems. Fig. 3 shows the
20} | R , (- : i :
i Tl ! comparison of the desired and estimated output of the
]O 1 1 1 1 1 _ H H
0 30 100 150 200 250 300 QPSO-ELM on Housing testing data set.

Samples

Fig. 3 Output of the QPSO-ELM algorithm on Housing
problem

For testing RMSE, norm and condition number,
the optimized ELMs obtain better results than ELM
on the two data sets. Among the optimized ELMs
QPSO-ELM performs the best on Boston Housing
and obtains best Testing RMSE and norm value on
abalone problem, IPSO-ELM2 obtain best condition
number on abalone problem.

For the hidden neurons number, IPSO-ELM2,
GO-ELM and QPSO-ELM achieve networks with
fewer hidden neurons than ELM and IPSO-ELM,
thus obtain a more compact network. GO-ELM

performs the best on abalone data set and

4.2 Evaluation on classification problems

The performances of all algorithms are tested on
three real-world benchmark classification data sets
which are listed in Tab. 4. The training data set,
validation data set and testing data set are randomly
generated at each trial of simulations according to the
corresponding numbers in Tab. 4. The performances
of the five algorithms on classification data sets are
listed in Tab. 5-7.

It can be observed from these tables that number
of hidden neurons assigned for ELM is different for
different problems. For image segmentation and
shuttle data set, 100 hidden neurons is enough for

ELM to attain a good testing accuracy, while in
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satellite image classification problem, if 100 hidden
neurons are assigned for ELM, the average training
accuracy is very poor (66.34%).

Therefore we assign 500 hidden neurons for
ELM on satellite image data set as suggested in Ref.
[2]. From Tab. 5, we can see that IPSO-ELM2,
GO-ELM and QPSO-ELM greatly reduced the
number of hidden neurons of the network and
manage to maintain testing accuracy with the same
level. QPSO-ELM attains the best testing accuracy
with the fewest hidden neurons. In fact, QPSO-ELM
with only 50 nodes can achieve similar generalization
performance as ELM with 500 hidden neurons. And

the number of hidden neurons is smaller than that of

satellite image classification.

Results on the other classification problems
show the similar conclusions: all the optimized ELMs
obtain better testing accuracy, norm and condition
number. Except IPSO-ELM, all the optimized ELMs
need fewer hidden neurons than ELM. Also all the
optimized ELMs take much more training time than
ELM.

QPSO-ELM performs the best in testing
accuracy, hidden neurons, norm and condition
number on shuttle problem. For Image segmentation
problem, QPSO-ELM performs the best in testing
accuracy, hidden neurons and norm. GO-ELM

performs the best in condition number. In general,

IPSO-ELM2 and GO-ELM. QPSO-ELM also QPSO-ELM  performs better than others on
performs the best in norm and condition number on classification applications.
Tab. 4 Specification of four classification problems
. Number of samples
Names attributes classes — — -
Training set Validation set Testing set
satellite image 36 2661 1774 2000
Image segmentation 19 1000 524 786
Shuttle problem 9 26 100 17 400 14 500
Tab. 5 Performance of the five algorithms on satellite image classification
. L Training accuracy ~ Testing accuracy . .
Algorithms  Training time(s) Hidden neurons Norm Condition number
Mean Std Mean Std
ELM 0.0335 0.8731 0.0106 0.8523 0.0083 500 352.43 5062.41
IPSO-ELM 198.33 0.8849 0.0091 0.8728 0.0126 100 133.50 1856.12
IPSO-ELM2 142.81 0.8852 0.0136 0.8656 0.0095 59.4 97.53 1654.83
GO-ELM 274.07 0.8773 0.0092 0.8690 0.0174 62.0 126.58 1545.76
QPSO-ELM 178.56 0.8905 0.0072 0.8765 0.0053 49.7 48.61 895.49

Tab. 6 Performance of the five algorithms on Image segmentation

Training accuracy Testing accuracy

Algorithms  Training time(s) Hidden neurons Norm Condition number
Mean Std Mean Std
ELM 0.027 09304 0.0042 0921 0.0032 100 147.25 4854.13
IPSO-ELM 39.08 09380 0.0063 0.947 0.0124 100 96.34 2029.72
IPSO-ELM2 38.34 09542 0.0068 0.958 0.0096 70.2 85.43 1 630.96
GO-ELM 54.26 09383 00117 0934 0.0079 66.9 105.46 2 543.25
QPSO-ELM 45.36 09655 0.0043 0960 0.0082 58.7 83.18 1891.38
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Tab. 7 Performance of the five algorithms on Shuttle problem

] o Training accuracy ~ Testing accuracy ] o
Algorithms  Training time(s) Hidden neurons Norm Condition number
Mean Std Mean Std
ELM 7.2937 09569 0.0196 09583 0.0182 100 15.580 1 640.94
IPSO-ELM 697.45 0.9687 0.0087 0.9655 0.0025 100 10.253 980.74
IPSO-ELM2 605.47 09754 0.0145 0.9701 0.0107 42.8 9.458 996.53
GO-ELM 816.50 09771 0.0169 0.9648 0.0056 31.6 11.025 1114.25
QPSO-ELM 756.95 09857 0.0101 0.9793 0.0070 29.8 8.964 7 954.030

4.3 Further analysis

4.3.1 Comparison of convergence performance

In order to evaluate the proposed algorithm in

depth, the mean evolution of the RMSE on validation
dataset of 20 trials by the four optimized ELMs on
*SinC’ function approximation and satellite image

data sets are plotted in Fig. 4.
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(b) Satellite image
Fig. 4. Mean evolution of the RMSE of the four algorithms

It can be observed from the Fig. 4(a) that

QPSO-ELM has much better converge performance

than the other three algorithms and obtains the best
RMSE after 50 iterations, IPSO-ELM2 is better than
GO-ELM and IPSO-ELM. In fact, QPSO-ELM can
achieve the same RMSE level as IPSO-ELM2 with
only half of the total iterations.

Fig. 4(b) shows the convergence of testing
accuracy on satellite image problem. Similarly, our
algorithm converges more effectively than the others
and attains best results after iterations. It can be
concluded that the introduction of quantum
mechanics helps QPSO to search more effectively in
search space, thus outperforms IPSO-ELM and

GO-ELM in converging to a better RMSE result.
4.3.2 Comparison of norm and condition number

To show how our proposed algorithm improves
the network condition and reduces the norm of the
output weights, the norm and condition numbers of
different algorithms on the two problems are shown
as box plots in Fig. 5-6. Fig. 5 does not include
results of ELM, as they are too much higher than that
of optimized ELMs.

It can be observed from the box plots that all the
optimized ELMs obtain smaller norm and condition
numbers than ELM. Also the results obtained by
optimized ELMs are more stable than ELM. This
indicates that the selection criteria which includes
both the fitness value (validation RMSE or testing
accuracy) and the norm of output weights helps the

algorithms obtain better generalization performance.

http: // www.china-simulation.com

* 2456 «

https://dc-china-simulation.researchcommons.org/journal/vol29/iss10/28
DOI: 10.16182/j.issn1004731x.joss.201710028

10



Shan et al.: Evolutionary Extreme Learning Machine Optimized by Quantum-behave

55 29 &35 10 Vol. 29 No. 10
2017 4 10 A N, A RhEET R T REOUAL AR BR 2 2T L Oct., 2017
<104 8

12— , 3 107 .
T 5.5 T 1

11t ; 1 i
— | 5.0f i

1or | 1 T .
of | % | 4.5 E | ]
+ 24.0 | i T
8 1 = i | g
> ! J
g 71 _ | = 3.5 [
= | —_ E30 ‘ _
61 | é J 5
51 , ; | S25¢ l ]
] | T
i ! 20t | ' .
) | | |

3 | | Lsp | ]
2r - J— - 4{— J 1.0 J

[PSO-ELM IPSO-ELM2 GO-ELM QPSO-ELM

IPSO-ELM IPSO-ELM2 GO-ELM QPSO-ELM

Fig. 5 Norm and condition number of SinC function approximation

s00p |
400}
300F L ]
£ i
i) |
Z |
200 L T _
100} — 1
|
I U= 5
0 L ) ] J
> > v >
< Q¥ Q}Q <Y <Y
& & ¢ &
N N &

8 000 ' ' ' —

-

7000 F 1

6 000 ¢ .

W

[

(=3

(=}
L

condition value
~
(]
()
S
.

3000r T _l_ J
| -
2000F | T o
|
1000t ! 1
- 4 T
o, . . .
2
& & o &
O O’Q) & &
$ & 3

Fig. 6 Norm and condition number of satellite image problem

Among all the optimized algorithms, for the
norm of output weights, QPSO-ELM performs the
best on satellite image problem, IPSO-ELM2 attains
best norm on ‘SinC’ function approximation. For
condition number, QPSO-ELM performs the best on
‘SinC’ and satellite image problem. In general,
QPSO-ELM performs better than the other optimized
ELMs.

5 Conclusions

In this study, a new hybrid learning approach for
SLFN named QPSO-ELM was proposed. The

proposed approach optimizes both the neural network
parameters (input weights and hidden biases) and
hidden layer structure using QPSO. And the output
weights are calculated by Moore-Penrose generalized
inverse, like in the original ELM.

In the optimizing of network parameters, not
only the RMSE on validation data set, but also the
norm of the output weights are considered to be
included in the selection criteria.

To validate the performance and effectiveness of
the proposed approach, it was applied to some

benchmark regression and classification problems.
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Results show that the proposed approach has
better generalization performance than the other
optimized ELMs and maintains a well-conditioned
system after training. Also, the proposed algorithm is
more effective in reducing the network size, which in

return  further improves the generalization

performance of the network.
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