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Abstract

Abstract: The parameter estimation problem of Hammerstein finite impulse response models and its
application on the wind curtailment prediction field were considered. By adopting the maximum likelihood
principle, the maximum likelihood estimate was obtained by minimizing the likelihood function. To reduce
the impact of the unknown noise term, the maximum likelihood idea and the filtering theory were
combined by changing the coupled nonlinear model into a parameter-independent model and to derive a
filtering based maximum likelihood stochastic gradient algorithm for the Hammerstein system modeling
on wind power curtailment prediction. The given simulation validates that the proposed algorithm can
identify the wind power characteristic curve accurately and contributes to calculate the wind power
curtailment prediction that shows its good practicability.
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systemsm; Ding considered the state filtering and
parameter estimation problems for state space
systems with scarce output availability and proposed
a least squares based algorithm and an observer based
parameter estimation algorithm to estimate the
system parameter matrices and states when the scarce
states are available!®.

Recently, some existing works on deriving the
identification methods have significant influence, e.g.,
Li et al. proposed a maximum likelihood least
squares identification method for input nonlinear
finite impulse response moving average systems by
directly estimating the parameters of the linear and
nonlinear parts of the Hammerstein system without
using the over-parameterization technique[gl; Wang et
al. derived a recursive maximum likelihood least
squares identification algorithm for systems with
autoregressive moving average noises based on the
maximum likelihood principle and proved that the
maximum of the likelihood function was equivalent
to minimizing the least squares cost functiont”.

Differing from the works in [9-10], this paper
considers the parameter estimation problem of
nonlinear Hammerstein systems and derives a
maximum likelihood stochastic gradient algorithm
for Hammerstein finite impulse response model. In
order to diminish the impact of unknown noise term,
a two-stage filtering based maximum likelihood
stochastic gradient algorithm is proposed.

The purpose of this paper is presenting an
identification algorithm to directly estimate the
parameters of nonlinear models, and shows its
effectiveness in the wind power curtailment
prediction simulation via true sampled data.

Briefly, the rest of this paper is organized as
follows. Section 1 presents the identification model

of the Hammerstein finite impulse response systems.

E R
Journal of System Simulation

\ol. 29 No. 3
Mar., 2017

Section 2 gives the modeling formula of calculate
wind power curtailment. Section 3 proposes a
filtering based maximum likelihood stochastic
gradient algorithm by transferring a finite impulse
response moving average model to a controlled
autoregressive model. Section 4 provides a wind
power curtailment prediction case to show the
effectiveness of the proposed algorithm in system
modeling. Finally, some concluding remarks are

offered in Section 5.

1 Problem formulation

Consider the following nonlinear system:

nc
y(t)=B(2)D ¢ f (u) + D(2)v(t) 1)

i=1
where u(t) and y(t) are the input and output
sequences of the Hammerstein finite impulse
response moving average (FIR-MA) system,

respectively, v(t) is the stochastic white noise with
zero mean and variance o , B(z) and D(z) are

polynomials in the unit backward shift operator z™*
lie. z7y®=yt-DI:

B(z):=1+bz ' +b,z 2 +---+b, 2™,

D(2):=1+dyz " +dyz 7% +---+d, 27
Assume that the orders n,, n, and ny are known,
y(t)=0,u(t)=0for t<0. The aim of identifying
Hammerstein system is to consistently estimate the
parameter vectors
. T
b=[b,b,, b, ] eR™,

c=[c,cy ¢, " eR™,

d:=[d,,d,,---,d, I" eR™

from the measured data {u(t),y(t)}., . From

Equation (1), the identification model can be
rewritten as
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y(t) =B(2)u(t) + D(z)v(t) =

ibﬂ(t —i)+ ici f, (u(t)) +
i-1 i-1

idiv(t —i)+v(t) =

i=1

¢ (©0+v() @)
2 The wind power curtailment modeling

The calculation of wind power curtailment is the
basis of well-planing on the power usage. The mainly
used way to get the power generation is by getting
the system model on the wind power firstly before
calculating its curtailment. By modeling the wind
power generation curve on the sampled wind power
data and wind speed data, the wind power curtailment
in the near future can be obtained.

In the modeling of wind power generation
system, the generated wind power can be calculated

by a formula that yields from (2), that is
p(t) =2 6v' M)+ e’ (t)
i=0 j=1

In the formula, P(t)is the sampled wind power
in a short time, i.e., 48 hours, v(t)stands for the
wind speed and e(t) is modeled as white noise that
shows the disturbance of sampling process. The main

object is to get the unknown vectors ¢ and ;.

3 The filtering based maximum
likelihood stochastic gradient
algorithm

For a given set of measurements {uy,yy}:=
{u@i), y(i)}, , let the likelihood function L(yy |Uy.1,6)

equals the probability density function p(yy |Uy.6).

By maximizing the likelihood function, the maximum

likelihood estimate 6, can be written as

O =arg gnax L(yn [Uy_1,6) (3)
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N
Where L(yN|uN—llH)=Hp(¢T(t)0+v(t)|yt—l’utfl!g)' 4

t=1
If the inputT(t) and the output y(t) are filtered by a
rational function D™*(z), the FIR-MA model in (1)
will be filtered into a controlled auto-regressive
model. Multiplying both sides of (1) by D™(z) yields

1 1 _
my(t) = B(Z)mu t)+v(t)

Or y;(t)=B(2)U; ('[)n:r v(t) c
Where T (t) = iZci fi(u) =>_cu;(t)
D(2) = i=1

ye ()= m )I’_(t)

u,0 :=ﬁ £, ()

Defining and minimizing the following cost function
L
3(6,) = D [w(i) - o, (6,1’ 16, (®)
i=1
The filtering based maximum likelihood stochastic
gradient (F-ML-SG) algorithm for Hammerstein
models can be summarized as follows:

A - d .
95(t):05(t_1)_%

I (t)

[ (1) - o7 )6, (t-1)] (6)
(1) = Rt =1+ || grad[v(O)] | IP (7)
gard[v(t)]l; =1 (1) (8)
6,(t) =6, -1)- _grad[vét()t])bn (-0

[W(t) - 67 ()6, (t-1)] )
L) =t -1)+ ngad[v(t)] e HZ (10)
gard[v(®)]|; ;) =~ (1) (12)
&1 (©) =[0; (t—=1),0; (t—2),-- 0y (t—1y,),U; 0),

U ®),:-U, O (12)

Uy (1) =& U, () + GO, 1) +-+&, U, @) (13)
U; ) =-d,t)0;t-D-d,t)J;(t-2) —-—d, ()
Uj(t-ny)+ f u(®) (14)
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@y (t) =[U(t-1),T(t—2),--, Ut —ny), fy(u(t)),

fou(t)), -+, f, ()] (15)
G, (1) =[U(t 1), 9(t - 2),--,9(t —ng)]" (16)
(D) =60 f, ) +EO UE) + -+, OF, UL) (A7)
9 ©=—d, O t-)—d,0)F; -2 ——d, (©)

§i (t—ng) +y(®) (18)
W(t) = y(t) - &) ()6, (t-1) (19)
i) =9, () -o7 06,1 (20)

The steps involved in the F-ML-SG algorithm
for Hammerstein systems are listed in the following:

1. To initialize, let t=1, set the initial values of
the parameter estimation variables and co-variance

matrices as follows:

és(i)=1”b+”c/% , én<i>=1% 0=V,

W(i) = %0, 0, (i) = %O, (i) = %)0, (i) = %,0

for iso,L]j(i)z%J for i<Oand j=12,-.n,,
0

Po =10°, and give the basis functions f;().

2. Collect the input-output data u(t) and y(t),
construct the information vectors ¢, (t) by (15),
@,(t) by (16), respectively. Compute W(t) by (19).

3. Compute grad[v(t)]|én(t_1) and r(t) by (11)
and (10). Update parameter vector én(t) by (9).

4. Compute U;(t) and §,(t) by (14) and
(18), and form ¢, (t) by (12).

5. Compute grad|[v(t)]] and r,(t) by (8)

6, (t-1)
and (7). Update parameter vector és(t) by (6).

6. Compute G, (t), T(t) and U(t) by (13),
(17) and (20).

7. Increase t by 1 and go to Step 2.

In addition, some published works have proved

that when the rational function [D‘l(z)—ﬂ is

filtered by the input-output data, the colored noise
can be filtered.
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4 Application and example

Consider a wind power curtailment prediction
problem. The sampled data is from a wind farm in
Jiangsu Province, China. The installed capacity of
this wind farm is 22.50 MW that contains 18 wind
turbines. This simulation is applied on one of the
wind turbines and the cut-in wind speed for this wind
farm is settled 3 m/s and the rated wind speed is
settled 10 m/s.

A series of wind speed data is shown in Fig. 1
and the given sampled wind speed is collected in
continuous 72 hours from March 1, 0:00:00, 2015 to
March 3, 23:50:00, 2015 with 10 minutes for one set.
The sampled array includes 432 sets of wind speed

and wind power data.

Wind speed (m/s)
[o)} BN ]

S N

[
T

00 50 100 150 200 250 300 350 400 450
Measurements

Fig. 1 Sampled wind speed curve in 72 hours

From Fig. 1, some sampled wind speed data are
under the cut-in wind speed set point. It is obvious
that the wind power characteristic curve is modeled
by the wind speed between the cut-in wind speed and
the rated wind speed, thus it is essential to deal with
the collected data and the wind speed-power data set
should be removed from the sampled data array. Thus,
the processed wind speed and wind power
measurements satisfy the wind power curtailment

forecasting that are shown in Fig. 2.
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Fig. 2 shows 249 wind speed and wind power
data sets, the wind power curve reflects the following
phenomenon with the wind speed. One common
method to model the wind power characteristic curve
uses the nonlinear system with colored noise as the
disturbance. The nonlinear model is set as in Section
2:

p®) = Vi) + > 9!t
i—0 1

In this simulation, we adopt the fifth order
nonlinear function and the F-ML-SG algorithm in (6)
to (20) for identifying the unknown parameters of the

wind power characteristic curve.
P(t) = 0.32312v°(t) — 7.64046v" (t) + 68.57059v* () —

289.29765v? () +590.90435v(t) — 471.59402 +
0.96403e(t) + 0.80749¢?(t)

150
g e
E 100 5
3 5
2 =
17) [}
el o
(=] ol
2 50 £
= =
2 0

50 100 150 200
Measurements

Fig. 2 Processed wind speed and wind power curve

The wind power prediction can be calculated at
each time t and the comparison between the collected
wind power and the wind power forecast is shown in

Fig. 3, that shows the predicted wind power has

highly consistency with the wind power sampled data.

By comparison, the maximum likelihood stochastic
gradient algorithm is also applied to forecast the wind
power generation and its simulation on the same
example is shown in Fig. 3.

From Fig. 3, it can be seen that the proposed

F-ML-SG algorithm has a better performance on

modeling the wind power generation curve,
especially on the big fluctuation sample data. The
main reason is that the presented F-ML-SG algorithm
can filter the colored unknown noise at the modeling
step, thus, the influence of the noise interference can

be reduced to the minimum.

150 T

— Windlpower o
-- Wind power F-ML-SG prediction
— Wind power ML-SG prediction

Wind power/KW

100 150 200 250

Measurements

Fig. 3 Comparison between sampled wind power and
prediction

The prediction of wind curtailment depends on
the different value between the wind power
prediction and the wind power sampled value. In
Figure 3, the prediction of wind curtailment is the
sum of absolute values of the inter-space between

two curves. The wind curtailment prediction
t
%= flP-p- 3PP
t=1

In this case, through forcasting the wind power
during next 72 hours, the wind power curtailment is
1905 KW that only has 7.653% accumulated error

compared with the true value.
5 Conclusions

This paper derived a maximum likelihood
stochastic gradient algorithm for the Hammerstein
nonlinear systems based on the filtering theory and

applied it on the wind power curtailment prediction.
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The original FIR-MA nonlinear system is transformed

into a controlled auto-regressive moving average 5]
model when the input-output data is filtered by the

rational function. The proposed algorithms are not
only applied on the wind power forecast field, but
can be also used for designing adaptive strategy for
input nonlinear systems and dealing with the

estimation of rotor power coefficient.
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