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Abstract

Abstract: Currently almost all denoising algorithms are implemented by processing original noisy image
itself simply, which could not enhance the performance further by combining original noisy image with the
denoised image. To solve the problem, a framework of progressive image denoising method was
proposed. The framework is based on the block matching and 3D collaborative filtering (BM3D) algorithm,
which has the most remarkable denoising effect. It includes three layers and two fusions. Each layer is
implemented by BM3D and denoises the fused image generated from the previous layers. Adequate
statistical results show that under the same noise condition, our proposed method and another new
algorithm can improve original BM3D on PSNR to different degrees, but ours has a better performance.
As the noise increases, the performance improvement is more remarkable, which means that the
proposed method can improve CT imaging quality and obtain good results.
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Abstract: Currently almost all denoising algorithms are implemented by processing original noisy image
itself simply, which could not enhance the performance further by combining original noisy image with
the denoised image. To solve the problem, a framework of progressive image denoising method was
proposed. The framework is based on the block matching and 3D collaborative filtering (BM3D)
algorithm, which has the most remarkable denoising effect. It includes three layers and two fusions. Each
layer is implemented by BM3D and denoises the fused image generated from the previous layers.
Adequate statistical results show that under the same noise condition, our proposed method and another
new algorithm can improve original BM3D on PSNR to different degrees, but ours has a better
performance. As the noise increases, the performance improvement is more remarkable, which means that
the proposed method can improve CT imaging quality and obtain good results.
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Introduction

In the actual image acquisition process, the
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reconstruction.

obtained image could not get rid of noise caused by
defects of the equipment, interference of the external
environment and human factors. The image noise not
only affects our subjective experience, but may
mislead our cognition. Image denoising is a classical
problem in image processing. It plays an important

role in other image processing techniques, such as
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image segmentation, analysis, recognition and so on.
There are many different types of noises. Gaussian
noise, uniformly distributed noise and Poisson noise
are familiar to us. In this paper, we pay attention to
the most common noise, additive Gaussian white
noise (AWGN). This kind of noisy image can be
modeled as y =z +n, where y is the observed noisy
image, z is the true image and n is AWGN with zero
mean and variance o . The purpose of image
denoising is to get an estimate of z from y, denoted by
z . Similar to image deblurring and image restoration,
this is an ill posed problem actually.

Various methods have been proposed to remove
AWGN. The common ground of those algorithms is
to smooth images and preserve the fine details as
much as possible. Early algorithms focused on the
local region of images: Susan filter!" bilateral
filter(BF) and so on. In the literatures”™*, authors
presented some practical and accessible frameworks
to understand the basic underpinnings of those
methods. The frameworks give us a new perspective
and unify several state-of-the-art nonlocal algorithms
to a certain degree. Local algorithms are mainly
based on averaging nearby pixels and have not
exploited the image content fully. Since non-local
means (NLM) algorithm based on similar patches
was proposed by Buades et al.”® nonlocality
undergoes an unprecedented development in
denoising!”! and other image processing techniques,

[9-10]

such as deblurring™, super resolution and volume

reconstruction!'.

It has been proved that there are many similar
patches in natural images''”. These similarities could
provide certain prior knowledge to restore images.
NLM compares not only the intensity of pixels but
whole

the geometrical configuration in a

neighborhood or image. The feature based on a

non-local averaging of all pixels in the image makes
NLM more robust than those local filters. Intuitively,
more effective measurement criteria for similarity and
more similar patches could bring better denoising
performance. Based on this, some improved NLM
algorithms have been put forward. Using principal
(PCA)

similarity weights was
12]

component analysis to achieve higher

accuracy proposed by
Tasdizen!'”!. Both the accuracy and computational
cost of NLM can be improved after the PCA
projection. Inspired by the human visual system
(HVS), Foi et al. introduced a patch foveation
operator and a foveated distance to measure patch
similarity!"*. The foveated self-similarity achieved a
substantial improvement due to better contrast and
sharpness. As a nice image quality assessment
method, structural similarity (SSIM) may be a good
choice too. Motivated by this, Rehaman et al
designed a two-stage SSIM-based approach '*. In
order to find more similar patches, Ji et al. introduced
the Zernike moments into NLM, and got much more
pixels or patches with translation-invariant and

(15 used Hu

rotation-invariant Grewenig et al
moment invariants and Zernike moment invariants to
handle rotationally invariant similarity and proposed
a rotationally invariant block matching (RIBM)
algorithm!'®". Then Yan et al. integrated Gaussian blur,
clustering and RIBM into the NLM framework, and

[17]

achieved improved performance Due to the

invariants have different magnitudes, Ji and
Grewenig  suggested  different  normalization
techniques  respectively.  Unfortunately, these

techniques aren't applicable for other invariants. The

main disadvantage of a rotationally invariant
similarity measure using moment invariants is that
invariants have different magnitude. Without any

normalization, the moments with a relative large
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magnitude will dominate the similarity measure. Up
to now, there is no universal normalization which is
optimal for all moment invariants.

Different from NLM, the block matching 3D
collaborative filtering (BM3D) algorithm is another
state-of-the-art denoising algorithm proposed by
Dabov et al.!"®). NLM makes use of the similarity in
the image, while BM3D combines similarity and
sparsity. This novel denoising strategy is realized by
several successive steps: 3D transformation of a
group consisted of similar 2D image patches,
shrinkage of the transform spectrum, and inverse 3D
transformation. The collaborative filtering can reveal
the finest details shared by the grouped patches and
preserve the essential unique features of each patches
at the same time. Because the patches' order in the
group is random, Ram et al. reordered them such that
they were chained in the "shortest possible path" and
gained a better performance under high
noiselevel (o = 50) , but worse performance under
low noise level .. Talebi et al. developed a paradigm
for truly global filtering where each pixel is estimated
from all pixels in the image *”. Both global NLM
and global BM3D have some improvement. Similar
to BM3D, patch-based locally optimal Wiener
(PLOW) algorithm is another denoising method
based on group filtering ' In addition, sparsity can
be also analyzed by dictionaries, such as PCA, DCT,

(22231 " approaches

Wavelet and so on. In the literatures
based on appropriate dictionaries which have sparse
and redundant representations are proposed.

All these algorithms obtain good performance by
using more effective measurement criterial for
similarity and mining more similar patches. Different
from them, this paper presents a novel framework of

progressive image denoising. The framework is based

on the block matching and 3D collaborative filtering

RGN HR

Journal of System Simulation

Vol. 29 No. 2
Feb., 2017

(BM3D) algorithm which has the most remarkable
denoising effect. It includes three layers and two
fusions. Each layer is implemented by BM3D and
denoises the fused image generated from the previous
layers. This kind of progressive image denoising can
improve signal to noise ratio further.

The remainder of the paper is organized as
follows: Section 1 reviews the whole process of
BM3D and proposes our framework based on it. Then
we design the corresponding experiment based on a
natural image database to verify its effectiveness and
apply the method to improve CT imaging quality in
Section 2. Finally, we make a summary of the whole

paper in Section 3.
1 Progressive Image Denoising

In this section, we first review the basic process
of BM3D briefly. Then our improved framework will

be designed and analyzed in detail.
1.1 BM3D Overview

BM3D is a denoising algorithm based on the fact
that an image has a locally sparse representation in
the transform domain. This sparsity can be enhanced
by grouping similar 2D image patches into 3D groups.
Collaborative filtering is a key technique for the
algorithm. Generally there are four steps for
collaborative filtering: a) finding patches similar to a
given patch and then grouping them into a 3D block;
b) 3D linear transformation of the block; ¢) shrinkage
of the transform spectrum coefficients; d) inverse 3D
transformation. In order to filter the noise effectively,
the algorithm showed in Figure 1 is divided into two
major steps: a) the first step estimates the initial
denoised image by using hard thresholding during the
collaborative filtering; b) the second step is based on
the basic estimate obtained in the first step. This step

adopts the Wiener filtering.
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H H be calculated by
1 1T -> 1] HE @ ien -2
T V@ [ W e, ©
Where @, is Wiener coefficient; other

|
ol

L

(a) basic denoising: hard
Thresholding

Fig. 1 Two phase BM3D denoising.

@ t.

—

(b) final denoising:
wiener filtering

"X includes the last
three steps of collaborative filtering

The basic estimate of the first step is given by

ZP W;l’ard QOey (P) ZQ (X)l/lgjfg (x)

ubasic (X) — (1)
ZPWI}; ! 0ey(P) 0O (x)
1 xeQ
= 2
Yo (x) {0 otherwise @

where P and Q are two patches; P is the
reference patch; ¥ (P) is a group of patches similar
to P; y,(x) is an indicator function to judge whether

pixel x belonging to Q; uh‘”d(x) is the estimate of

the value of the pixel x belonging to the patch Q

obtained during collaborative filtering of the

reference patch P; wh™

is the hard-weight of P and
can be calculated by

1 hard
w;l)ard: N]l;ard NP ' =1 (3)

1 otherwise

where Nj™ s the

coefficients in the 3D block after hard-thresholding.

number of non-zero

The final estimate obtained from the second step
is given by
o - 2 e 7o (9 ()
Z wlen ZQGV/ )ZQ( )

Where w) is the wiener-weight of P and can

“)

parameters are similar to the basic denoising. More

details can be found from®!.

1.2 Denoising based on the Fused Image

Compared to early denoising algorithms, BM3D
combines similarity and sparsity skillfully and
improves the denoising performance significantly.
Figure 2 displays one natural image denoised by
BM3D and an average fusion image. The original

image is from the standard LIVE database™®”. The

corresponding mathematical expressions are as
follows:
y=z+n (6)
za:BM3D(y,n):Z+na @)

Where y is the observed noisy image; z is the
true image and n is AWGN with zero mean and

variance o ; BM3D(,-) is the denoising operator; z,

is the residual noise.

is the denoised image; #,

(b) noisy image y
(PSNR=18.589 2)

(c) image z, denoised by BM3D (d) average fusion image y,;
(PSN =27.601 3) (PSNR=23.306 7)

Fig.2 BMS3D performance. The noise level ¢=30.
Subfigure (d) is fused by (b) and (c) equally
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In Figure 2(d), we also show the fusion image y,

generated by
+ +
Y1:y22u: +n2nu:Z+”1 (®)
where n, = %o

is noise of the fusion image y,.

What interests us most is "can we make full use
of the noisy image and the denoised image to
improve the denoising performance further". Since
any algorithm cannot denoise image completely and
ensure that each denoised region has the same noise
level, we can only approximate that n, meets the

Gaussian distribution and cannot know the exact
value of n;. Here we denoise the fusion image y; with
a serial of noise parameters. From Figure 3, we can
find clearly that if we choose a proper o to denoise

the fusion image with BM3D, the PSNR could
increase further.

28.5 -
— — -Test
——BM3D)
28.0} g
27.5¢ // T~
a4
Z pd
4 /
270 y 1
/
/
/
265}/ 1
260 1 1 1 1
10 12 14 16 18 20

G|

Fig. 3 Denoise the fusion image with different o . Dash line -
the result of denoising fusion image Fig. 2(d) with
o €[10,20] ; Solid line - the result of standard BM3D (for
comparison, regardless of the horizontal parameters).

So the key is to determine the noise level of
fusion image. In order to ensure the reliability of
estimates, we test and analyze 29 images from the

standard database LIVE. Algorithm 1 is the way of
testing. Figure 4 and Table 1 show the relationship of

test results respectively. From Table 1, we can find

that o, ~ o /2. It not only indicates that BM3D has

significant denoising performance with small residual

noise n, (n=(n+n,)/2=n/2), but also
demonstrates that n, just approximates a Gaussian

L o}
distribution (o, fluctuates around —).

Algorithm 1: The method of calculating noise parameter o,
// Pseudo-code of calculating oy

// Input: the initial noise o, test set { img,, img,, -, img, }
// Output: noise parameter o
for i=1:n /* read n images */
noisy, = img,; + noise, ; /* add noise */
[denoised),,denoised?2,| = BM3D(noisy,,c) ;/* denoise

image with BM3D, the output includes the basic and final
denoised images */

mixed, = (noisy, + denoised?2,)/2 ;/* construct a fusion
image */

— . . . [k %
r=0,,,:0.1:0,,;/* custom search scope */

for j=1:L /* L isthe length of 7 */
[denoisedli’j,denoisele.’J = BM3D(mixed,.,rj) ;

Di; :psnr(img,,denoisedZi‘j) ; /*calculate PSNR
of fusion image denoised by different noise
parameters */

end

D, = max(p,,j ) -Di;s /* compare with the max value */
end

SD psnr

:sum(D,., /.); /* accumulate the difference under the
same 7, */

Let k is the index of minimum value in SD

psnr >

SO O, =7,

70 ; - - - :
v e 6:10
- ---c=20 |
60r S =30
; ' —---0=40
501 ' ——0o=50
|
g 401 “\ ; 1
a \ \
301 \ .-':l} ]
|| P \
20 VA '
‘l g \ \.
10} ¥yoou ]
. \\ ,"'A, -\’,"
0 .:I'"' \\,_l \~_|.¢" .\.|._‘
5 10 15 20 25 30
G

Fig. 4 The relationship of SDyg, and ; in Algorithm 1
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Table 1 The relationship of o and g, n, = (1 -—w, —w, ) nAw, n, W, ny.
Initial noi 10 20 30 40 50 .
nhanose In order to find the optimal w, and w;, we
Noise parameter o; 5.5 10.1 15 204 245
generate fusion images with different w,
1.3 Design of the Progressive Image
Denoising Algorithm

Inspired by Section 1.2, we design a novel

framework of progressive image denoising as Figure

5. The framework includes three layers and two
fusions. Each layer is implemented by BM3D and
denoises the fused image generated from the previous

layers. The first layer is the ordinary BM3D; the

second layer denoises the fused image generated from

and wy,
then denoise them with BM3D. After comparing the

output performance, we find w,=0.25w,=0.5 .

Similar to the computational method in Algorithm 1,
the relationship of SDps,, and o, is calculated and
displayed in Figure 6. The whole relationship of o,

o,,and o, isshowed in Table 2 and Figure 7

»

50 T
""""" 0=10,0=5.5 ||
4 ---6=20,6=10.1
40r == 0=30,0=15 ||
. L 351 \ ; —0=40,0=20.4
the original noisy image and the final output of the \ . i |—o=50,0=24.5
301 v —
first layer; the last layer denoises the fused image sl ! 4 ‘ ]
generated from the original noisy image and the final g 20 \ v |
Q \ . :,-'
outputs of the first and second layer. 2 st ‘\\ ¥ 1
Loy LAY .
op v\ Y S 1
Noisy A i
ST Y ‘\ . S
;l II B ":' = ‘$ | 1
BM3D 7274 6 s 10 12 14 16 18 20
vV [¢5}
BM3D | . . .
l Fig. 6 The relationship of SDg, and o,
BM3D --->9)—» Denoised Table 2 The relationshipof o, ¢}, and o,
Fig. 5 The framework of progressive image denoising. Dash Initial noise o 10 20 30 40 50
line - the basic output; Solid line - the final output in Figure 1. Noise parameter o, 55 101 15 204 245
Noise parameter o, 3.1 57 84 11.2 135
In the second layer, we fuse the two images 25 . . .
averagely. While in the third layer, we design a
different strategy to fuse images.
z, =BM3D(y;,n)=z+n,
b)) =(1_Wa _Wb)'y+wa "Zg +Wb "Zp =

©)
z+(1=w, —w,)-n+w, -n,+w, -n, =
z+nmy; w,,w, €(0,1) (10)
where z, and z, are denoised images from y
and y; respectively; n, and n, are residual noises from

z, and z, respectively; y, is the second fusion image

0

10
generated from y, z, and z,; w, and w;, are the weights

of z, and z, respectively; n, is the noise of y, and

——O0)
1

30
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It clearly shows that o, ~ o /4. In addition, the
final output has a better PSNR than the basic output
generally, while Figure 8 shows an anomaly in the
third layer. The reason is that the noise in the second
fusion image no longer conforms with an absolute
Gaussian distribution. In this case, the final output is
not always better than the basic output. Based on the
analysis of experiments, we choose the basic output

in the third layer.

24.55

2450 ---- Final

2 4 4 0 | , N .

24.35¢ / T

PSNR

24.30f /
24.25f

24.20¢

24.15 ;
5 10 15

(o5}

Fig. 8 Denoise the second fusion image with different o,.

2 Performance Evaluations

In this section, we do some experiments on a
standard image database to validate our denoising
framework and apply the algorithm to improve CT

imaging quality.
2.1 Experiment on Natural Image Database

In the last section, we do experiments on LIVE
database to determine the noise parameters. To prove
the universality of the parameters, we are going to
test these parameters with another famous database

TID2008™). Like LIVE database, TID2008 is

RGN HR

Journal of System Simulation

Vol. 29 No. 2
Feb., 2017

intended for evaluation of full-reference image visual
quality assessment metrics, which contains 25
standard reference images (Io1,loz," < *,lo2s)-

Table 3 and Figure 9 show detailed lists of
PSNR comparison in our framework's each layer
respectively. It's clear that as follows, when =10,
layer 2 has the best performance; when ¢=20, layer 3
is better than layer 2 slightly; when 6=30, layer 3
will be superior. We calculate the increase of layer 2

and layer 3 with respect to layer 1 by following

expression:

T:M.
: 25 :

k=23 (11)
where p;; is the PSNR, £ is the layer index, i is
the image index.

Based on the analysis, we make the following
strategy to optimize the final output of the framework.
If 0<20, choose the 2™ layer's output as the
framework's output; if o = 20, choose the 31 layer's
output as the framework's output. In Table 3, 75 is the
final increase after taking the above strategy. We can
find that, as the noise increases, the performance
improvement is more obvious. In addition, we
compare our method with G-BM3D proposed by
Talebi®). The T, ,,5, in Table 3 is the improved
PSNR of G-BM3D with respect to the traditional
BM3D. Since BM3D has an excellent denoising
performance, almost all improved algorithms based
on it just have small improvements. Compared with
G-BM3D, our algorithm is slightly better in each
noise level. In Figure 10, we display some
comparisons of performance. They demonstrate that

our algorithm focuses on repairing some details.
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Table 3 Tests on TID2008. The comparison of PSNR in each layer. The odd rows — PSNR of input image in each layer, the even

rows — PSNR of the output image in each layer

=10 =20 =30 =40 =50
Layer 1 Layer2 Layer3 || Layer! Layer2 Layer3 | Layerl Layer2 Layer3 || Layer] Layer2 Layer3 | Layerl Layer2 Layer3
28.1397 30.5183 31.1878 || 22.1191 25.9135 27.3064 | 18.5973 23.0689 252123 || 16.0985 20.8976 23.6654 | 14.1603 19.2699 22.4247
o1 31.3052 31.3753 31.3507 || 27.4008 27.6163 27.5999 | 25.6678 25.8356 25.8312 || 24.5557 24.7013 24.7190 || 23.6638 23.9150 23.9392
102 28.1397 322734 34.0557 || 22.1191 27.1062 30.1818 | 18.5973 23.8833 27.6889 || 16.0985 21.5281 25.8066 | 14.1603 19.7535 24.2913
34.1637 34.2169 342123 || 31.4453 31.5681 31.5849 | 30.0688 30.1603 30.2083 || 29.1038 29.2033 29.2828 || 28.4623 28.5289 28.6044
103 28.1397 327712 355817 || 22.1191 27.3167 31.0291 | 18.5973 24.0021 28.2345 || 16.0985 21.5951 26.1688 | 14.1603 19.7923 24.5312
37.0857 37.1132 37.0735 || 33.6358 33.7149 33.7195 | 31.8444 31.9070 31.9630 || 30.5492 30.6721 30.7718 || 29.6943 29.7649 29.8792
28.1397 32.6217 34.9829 | 22.1191 27.2856 30.8785 || 18.5973 23.9880 28.1954 || 16.0985 21.5918 26.1740 || 14.1603 19.7774 24.5259
104 35.6722 35.6821 35.6590 || 33.1516 33.1648 33.1797 | 31.7851 31.7876 31.8556 || 30.7319 30.7764 30.8680 | 30.0214 29.9513 30.0716
28.1397 30.7786 31.7552 | 22.1191 25.8338 27.4066 || 18.5973 22.8550 25.9535 || 16.0985 20.5929 23.1273 || 14.1603 19.0557 21.9069
103 32.4696 32.3328 322714 || 28.3065 28.2810 28.2395 || 25.9783 26.0686 26.0393 || 24.2003 24.4552 24.4381 || 23.1282 23.4624 23.4460
28.1397 30.8946 31.8286 | 22.1191 26.0452 27.7000 || 18.5973 23.1184 25.4312 || 16.0985 20.9189 23.7943 | 14.1603 19.3158 22.5801
100 32.1800 32.1816 32.1460 || 28.1966 28.3397 28.3225 | 26.2266 26.3826 26.3735 || 24.9508 25.1127 25.1144 || 24.0654 24.3092 24.3055
28.1397 323246 34.6095 || 22.1191 26.9666 30.0338 | 18.5973 23.7149 27.3002 || 16.0985 21.3393 253051 || 14.1603 19.5872 23.7570
107 35.8980 35.8867 35.8680 || 32.0580 32.1020 32.1207 | 29.9381 30.0177 30.0646 || 28.4061 28.5763 28.6356 | 27.3867 27.5264 27.6078
108 28.1397 30.9902 31.9945 || 22.1191 26.0586 27.8148 | 18.5973 23.0509 25.4039 || 16.0985 20.7745 23.5769 || 14.1603 19.1826 22.3094
324272 32.3768 323871 | 28.6353 28.6409 28.6661 | 26.5986 26.6305 26.6574 | 24.9665 25.1486 25.1727 || 23.9982 242172 24.2417
109 28.1397 322655 34.3830 || 22.1191 26.9683 29.9874 | 18.5973 23.7424 27.3391 || 16.0985 21.3827 25.3936 || 14.1603 19.6301 23.8751
353277 35.3298 353127 || 31.7830 31.8446 31.8571 | 29.8694 29.9354 29.9680 | 28.5045 28.6224 28.6735 || 27.5759 27.6993 27.7703
28.1397 322719 34.3870 | 22.1191 26.9699 29.9797 || 18.5973 23.7362 27.3042 || 16.0985 21.3795 25.3447 | 14.1603 19.6258 23.8194
1o 352985 35.3110 352892 || 31.6944 31.7880 31.7863 | 29.6628 29.7897 29.8016 | 28.2193 28.3783 28.4039 || 27.1847 27.3764 27.4177
28.1397 31.3495 32.5474 | 22.1191 26.3706 28.4056 || 18.5973 23.3326 26.0221 || 16.0985 21.0745 24.2837 || 14.1603 19.4060 22.9515
m 32.8552 32,9011 32.8970 || 29.0857 29.2440 29.2478 | 27.1575 27.3099 27.3249 || 25.8694 26.0289 26.0577 | 24.9241 25.1687 25.2008
28.1397 322802 34.2345 | 22.1191 27.0826 30.2075 || 18.5973 23.8667 27.6771 || 16.0985 21.5151 25.7834 | 14.1603 19.7465 24.2721
2 34.7294 34.7763 34.7465 || 31.8086 31.8836 31.8739 | 30.2748 30.3386 30.3550 || 29.1852 29.2910 29.3276 || 28.4648 28.5779 28.6338
28.1397 29.7929 30.1376 || 22.1191 25.1452 25.9772 | 18.5973 22.3978 23.8013 || 16.0985 20.3449 222907 || 14.1603 18.8965 21.2524
3 30.1314 30.2042 30.1871 || 25.8833 26.0663 26.0542 | 23.8679 24.0655 24.0589 || 22.5481 22.7739 22.7835 || 21.6438 21.9768 21.9773
114 28.1397 30.9941 31.9518 || 22.1191 26.1736 27.9446 | 18.5973 23.1978 25.6604 || 16.0985 20.9600 23.9668 | 14.1603 19.3268 22.6869
32.2409 322652 32.2339 || 28.5033 28.6252 28.6098 | 26.6645 26.7760 26.7703 || 253693 25.5208 25.5293 || 24.4496 24.6900 24.6979
115 28.1397 324427 34.6261 || 22.1191 27.1565 30.4503 | 18.5973 23.9056 27.8351 || 16.0985 21.5326 25.8815 | 14.1603 19.7490 24.3271
353045 35.3432 353183 || 32.2830 32.3653 32.3669 | 30.7196 30.7739 30.8138 || 29.5884 29.6791 29.7457 || 28.8897 28.9173 29.0031
28.1397 32.1249 33.9832 | 22.1191 26.9747 29.8867 || 18.5973 23.7987 27.4086 || 16.0985 21.4693 25.5754 | 14.1603 19.7109 24.1029
1 34.5269 34.6090 34.5798 || 31.1984 31.3445 31.3283 | 29.5621 29.6786 29.6813 || 28.5159 28.6105 28.6393 || 27.8569 27.9241 27.9742
28.1397 32.1529 34.1502 | 22.1191 26.9017 29.8176 || 18.5973 23.6928 27.1883 || 16.0985 21.3512 25.2651 || 14.1603 19.6048 23.7559
1 35.0635 35.0518 35.0206 || 31.5659 31.6044 31.6055 || 29.5948 29.6706 29.6888 | 28.1878 28.3184 28.3494 || 27.1473 27.3251 27.3733
28.1397 31.0808 32.1222 | 22.1191 26.1775 27.9919 || 18.5973 23.1912 25.6523 || 16.0985 20.9554 23.9377 || 14.1603 19.3256 22.6661
s 32.4987 325006 32.4403 || 28.6138 28.7500 28.7176 | 26.6249 26.7833 26.7631 || 25.2406 25.4399 254329 || 24.3555 24.5896 24.5847
28.1397 31.7279 33.2383 || 22.1191 26.6837 29.1794 | 18.5973 23.5525 26.7240 || 16.0985 21.2163 24.8530 || 14.1603 19.5068 23.4179
e 33.7597 33.7696 33.7711 || 30.4496 30.4598 30.4832 | 28.7272 28.7267 28.7636 || 27.3835 27.4700 27.5186 || 26.4775 26.5739 26.6272
120 28.1397 32.6631 352763 || 22.1191 27.1963 30.6380 | 18.5973 23.9030 27.8249 || 16.0985 21.5023 25.7463 | 14.1603 19.7224 24.1606
36.5918 36.5951 36.6137 || 32.9119 32.9843 33.0244 | 30.8057 30.9139 30.9769 || 29.1917 29.3911 29.4618 || 27.8864 28.2580 28.3090
1 28.1397 31.2702 32.4956 || 22.1191 26.2697 28.2324 | 18.5973 23.2578 25.8482 || 16.0985 21.0014 24.1034 | 14.1603 19.3651 22.8081
33.0180 32.9901 32.9758 || 29.0341 29.1523 29.1582 | 26.9962 27.1488 27.1630 || 25.6267 25.8031 25.8247 || 24.6596 24.9125 24.9288
28.1397 31.5309 32.7826 | 22.1191 26.6289 28.9054 || 18.5973 23.5621 26.6190 || 16.0985 21.2777 24.8967 | 14.1603 19.5570 23.5062
122 329353 33.0432 33.0216 || 29.5327 29.7041 29.6984 | 27.9955 28.1038 28.1165 || 26.9409 27.0564 27.0912 | 26.2018 26.3439 26.3845
28.1397 32.6987 35.3912 | 22.1191 27.2207 30.7974 || 18.5973 23.9035 27.9592 || 16.0985 21.5012 25.8774 || 14.1603 19.7254 24.2981
23 36.7901 36.7563 36.7089 || 33.5297 33.4687 33.4583 | 31.6120 31.5570 31.5863 || 30.0321 30.1588 30.2003 | 29.2604 29.2547 29.3230
28.1397 31.6650 33.1743 | 22.1191 26.5512 28.8694 || 18.5973 23.4350 26.3629 || 16.0985 21.1268 24.5066 | 14.1603 19.4512 23.1606
124 33.7123 337660 33.7687 || 29.8449 29.9769 29.9777 | 27.8290 27.9705 27.9892 || 26.3162 26.5553 26.5849 || 25.5442 25.7354 25.7710
s 28.1397 32.6401 35.5752 || 22.1191 26.8396 29.9451 | 18.5973 23.4833 26.7922 || 16.0985 21.0452 24.5409 || 14.1603 19.2961 22.8538
37.5489 37.6702 38.1321 || 32.1420 32.2522 32.6178 | 29.0936 29.2952 29.6193 || 26.7839 27.1953 27.4863 | 24.5219 25.3958 25.6209
T, — 0.0205  0.0180 — 0.0899  0.1042 — 0.0985  0.1307 — 0.1588  0.2058 — 0.1972  0.2491
T 0.0205 0.1042 0.1307 0.2058 0.2491
Ty 0.0201 0.0820 0.0915 0.1572 0.2109
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Fig. 9 The graphs corresponding to Table 3.

Fig. 10 Comparisons of performance. 1% row — the original true images, 2™ row — the noisy images =40, 3™ row — the denoised
images (original BM3D), 4" row — our denoising algorithm, 5™ row — the difference between the 3rd and 4th row.
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2.2 Application in CT Imaging 1 given by the exponential attenuation law

I=1,-¢" (13)

In this section, we will apply our algorithm to
the CT simulation platform. CT is a significant
milestone in human history of science and technology.
This revolutionary NDT (Nondestructive Testing)
method improves the development of industry, health
care and life science research. We develop a CT
platform iCTSim based on Geant4 to simulate X-ray

29-30]

imaging! . There are four effects involved in

X-ray absorption: the Compton scattering, the
photoelectric effect, the Rayleigh scattering, and the
pair production. Each of them contributes to the
absorption cross section oy,

O 1otal = Com T O Pho T O Ray T O pgir (12)

These four effects can bring noise artifacts to
degrade the imaging quality.

In Table 4, some parameters are listed. We
design a model including 9 materials: Carbon-C,

Sulfur-S,Silicon -Si, Sodium-Na, Magnesium-Mg,
Aluminum-Al, Polyethylene-(C,H,) ,Teflon-

(C,E,), , Polyoxymethylene-(CH,0) . The X-ray
gun emits 500 particles at each position. We
undertake a parallel implementation on Sugon Server

1950r-G provided by our institute.

Table 4 Parameters of parallel CT simulated

Energy 25.0/keV
Detector Row/Col 1 000
Detector Unit Size 0.0 /mm

Each Material
. . 15/mm
Height/Width
Each Material Thickness 0.5/mm

Figure 11 is the image generated on the detector.
Each point denotes the intensity of X-ray. A narrow
beam of monoenergetic photons with an incident
intensity [, , penetrating a layer of material with

thickness L and density o, emerges with intensity

The mass attenuation coefficient x4/ p can be
obtained from measured values of /,,/and L.

wlp=(pL) " In(1,/1) (14)

Since the existence of scattering, the noise on
the detector is inevitable. First we should adopt the
statistical method to validate the mass attenuation
coefficients of the 9 materials by the formula (14).
From the comparisons in Table 5 and Figure 12, we
can find that the simulated results agree well with the

standard data from NISTP!Y,

(GHy),

(GFy,

(CH,0),

Fig. 11 Image on detector.Each pixel denotes the intensity of

X-ray

Table 5 Mass Attenuation Coefficients (mm?%/g) of 9

materials

Material Simulated Standard
C 26.241 25.753
S 332.93 331.20
Si 220.33 218.19
Na 99.005 99.669
Mg 135.68 134.47
Al 170.09 168.71
(C,Hy), 26.354 26.904
(CoFy), 49.736 48.884
(CH,0), 37.032 36.115
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Based on the reasonability of the platform, we

need to analyze the noise distribution on the detector.

2017 4 2 J
350 Mass attenuation coefficient
250k /‘I] \ Figure 13 shows the intensity histograms of the 9
w 2004 | \\ materials in Figure 11. They almost obey approximate
Né 150k / \\\ ,\ Gaussian distributions which is the basic condition of
/ \ '// - \ our denoising algorithm. Before denoising, the initial
al noise level must be estimated. We use a patch-based
>0 {' v/’/\\‘ noise level estimation algorithm proposed in [32] to
% s si Na Mg. Al '(C2H4'),, (C2F4)n (CH,0), solve the problem, then calculate the noise parameters
Fig. 12 The graphs of mass attenuation coefficients in the in Layer 2 and Layer 3 according to the curves in
Table 5 Figure 7.
100 ¢ 100 5 100 Si
50t 50 : ‘ ‘ 50
Lol i
460 480 500 00 350 400 00 350 400 450
Na Mg Al
80 100 100
60 -
40 + 50F 50
20 ‘
%0 “4161‘(1)1 s 50 %0 450 500 450 400 500
80 (G, 100 (@1, 100 (C1LO),
60 r ‘
40 r 50 501
20 1
O470 480 490 500 9140 460 480 500 0460 480 500
DeNSITY (%25 keV)
Fig. 13 Intensity histograms of 9 materials in Figure 11

Figure 14 and Figure 15 display the comparisons

of the Mg on the detector and Mg denoised by our

progressive image denoising algorithm. The variance

of the denoised image are far less than the original

http: // www.china-simulation.com
1

*202 .

Published by Journal of System Simulation, 2017



Journal of System Simulation, Vol. 29 [2017], Iss. 2, Art. 7

5529 5 2 W Vol. 29 No. 2
20174E2 A AR, A Tk R R A Feb., 2017

noisy image. This fully proves the effectiveness of References:

our algorithm. [1] Smith S M, Brady J M. Susan-a new approach to low

level image processing [J]. International Journal of

Computer Vision (S0920-5691), 1997, 23(1): 45-78.

[2] Tomasi C, Manduchi R. Bilateral filtering for gray and
color images [C]/ Proceedings of the 6th IEEE
International Conference on Computer Vision. Bombay,
1998. USA: IEEE, 1998: 839-846.

[3] Takeda H, Farsiu S, Milanfar P. Kernel regression in for
image processing and reconstruction [J]. IEEE

Transactions on Imaging Processing (S1057-7149), 2007,
16(2): 349-366.

[4] Milanfar P. A tour of modern Image Filtering-new

(a) The noisy Mg on (b) The denoised result by
the detector our method

Fig. 14 The comparison of noisy Mg and denoised Mg o . .
insights and methods, both practical and theoretical [J].
IEEE Signal Processing Magazine (S1053-5888), 2013,
0.94 — 30(1): 106-128.
—— Noisy image
— Denoised image [5] Buades A, Coll B, Morel J M. A non-local algorithm for

image denoising [C]// Proceedings on IEEE Computer

0921

0.90 Society Conference on Computer Vision and Pattern

Recognition, USA: IEEE, 2005: 60-65.

[6] Buades A, Coll B, Morel J] M. A review of image
denoising algorithms, with a new one [J]. SIAM Journal
on Multiscale Modeling and Simulation (S1540-3459),

0.88 i

0.86

0.84
2005, 4(2): 490-530.
0.821 [7] Chatterjee P, Milanfar P. Is denoising dead? [J]. IEEE
0.80 . . . . . . . . Transactions on Image Processing (S1057-7149), 2010,
0 100 200 300 400 500 600 700 800 900 19(4): 895-911.
Fig. 15 The comparison of the normalized intensity in [8] Danielyan A, Katkovnik V, Egiazarian K. BM3D frames
Figure 14 (the center profile) and variational image deblurring [J]. IEEE Transactions
on Image Processing (S1057-7149), 2012, 21(4):
1715-1728.

[9] Glasner D, Bagon S, Irani M. Super-resolution from a
single image [C]/ Proceedings of the 12th IEEE
International Conference on Computer Vision, USA:
IEEE, 2009: 349-356.

Zhang Kaibing, GaoXinbo, Tao Dacheng, et al. Single

3 Conclusions

BM3D is a state-of-the-art algorithm with the
most remarkable denoising effect. The paper proposes [10]

a progressive image denoising algorithm based on image super-resolution with non-local means and
steering kernel regression [J]. IEEE Transactions on
Image Processing (S1057-7149), 2012, 21(11):

4544-4556.
LIVE and TID2008 database and apply the method to [11] Maggioni M, Katkovnik V, Egiazarian K, et al. Nonlocal

BM3D, which includes three layers and two fusions.

We verify the superiority by doing experiments on

improve the imaging quality of our CT simulation transform-domain filter for volumetric data denoising
and reconstruction [J]. IEEE Transactions on Image
Processing (S1057-7149), 2013, 22(1): 119-133.

Tasdizen T. Principal components for non-local means

platform. Through the experiments, the proposed
algorithm has better performance than BM3D. As the [12]
noise increases, the performance improvement is image denoising [C]/ Proceedings of the 15th IEEE

more remarkable. International Conference on Image Processing, USA:

http: // www.china-simulation.com
*293

https://dc-china-simulation.researchcommons.org/journal/vol29/iss2/7
DOI: 10.16182/j.issn1004731x.joss.201702007



F296H 2 M
201742 H

[16]

(18]

(20]

Li et al.: Progressive Image Denoising Algorithm

IEEE, 2008: 1728-1731.

Foi A, Boracchi G. Foveated self-similarity in nonlocal
image filtering [C]// SPIE Proceedings on Human Vision
and Electronic Imaging XVII, USA: SPIE Press, 2012,
doi:10.1117/12.912217.

Rehman A, Wang Zhou. SSIM-based non-local means
image denoising [C]// Proceedings of the 18th IEEE
International Conference on Image Processing, 2011.
USA: IEEE, 2011: 217-220.

Ji Zexuan, Chen Qiang, Sun Quan-Sen, et al. A
moment-based nonlocal-means algorithm for image
denoising [J]. Information Processing Letters
(S0020-0190), 2009, 109(23): 1238-1244.

Grewenig S, Zimmer S, Weickert J. Rotationally
invariant similarity measures for nonlocal image
denoising [J]. Journal of Visual Communication and
Image Representation (S1047-3203), 2011, 22(2):
117-130.

Yan Ruomei, Shao Ling, Cvetkovic S D, et al. Improved
nonlocal means based on pre-classification and invariant
block matching [J]. IEEE Journal of Display Technology
(S1551-319X), 2012, 8(4): 212-218.

Dabov K, Foi A, Katkovnik V, et al. Image denoising by
sparse 3-D transform-domain collaborative filtering [J].
IEEE Transactions on Image Processing (S1057-7149),
2007, 16(8): 2080-2095.

Ram I, Elad M, Cohen I. Image processing using smooth
ordering of its patches [J]. IEEE Transactions on Image
Processing (S1057-7149), 2013, 22(7): 2764-2774.
Chatterjee P, Milanfar P. Patch-based near-optimal image
denoising [J]. IEEE Transactions on Image Processing
(S1057-7149), 2012, 21(4): 1635-1649.

Talebi H, Milanfar P. Global image denoising [J]. IEEE
Transactions on Image Processing (S1057-7149), 2014,
23(2): 755-768.

Elad M, Aharon M. Image denoising via sparse and
redundant representations over learned dictionaries [J].
IEEE Transactions on Image Processing (S1057-7149),
2006, 15(12): 3736-3745.

Tasdizen T. Principal neighborhood dictionaries for

nonlocal means image denoising [J]. IEEE Transactions

RGN HR

Journal of System Simulation

(24]

(23]

[29]

[32]

Vol. 29 No. 2
Feb., 2017

on Image Processing (S1057-7149), 2009,
2649-2660.

Deledalle C A, Salmon J, Dalalyan A. Image denoising
with patch based PCA: [C)/
Proceedings of the British Machine Vision Conference,
UK: BMVC, 2011: 1-10.

Yan Ruomei, Shao Ling, Liu Yan. Nonlocal hierarchical

18(12):

local versus global

dictionary learning using wavelets for image denoising
[J]. IEEE Transactions on Image
(S1057-7149), 2013, 22(12): 4689-4698.
Lebrun M. An analysis and implementation of the
BM3D image denoising method [J]. IPOL Journal of
Image Processing On Line (S2105-1232), 2012, 2(25):
175-213.

Sheikh H R, Wang Zhou, Cormack L, et al. LIVE Image
[DB/OL].

http:/live.ece.utexas.edu/

Processing

Quality Assessment Database Release 2
(2014-06-19) [2015-06-01].
research/quality.
Ponomarenko N, Lukin V, Zelensky A, et al. TID 2008-
A Database for Evaluation of Full-Reference Visual
Quality Assessment Metrics [J]. Advances of Modern
Radioelectronics (S2070-0784), 2009, 10(4): 30-45.
Peter S, Modregger P, Fix MK, et al. Combining Monte
Carlo methods with coherent wave optics for the
simulation of phase-sensitive x-ray imaging [J]. Journal
of Synchrotron Radiation (S1600-5775), 2014, 21(3):
613-622.

Allison J, Amako K, Apostolakis J, et al. Geant4
developments and applications [J]. IEEE Transactions on
Nuclear Science (S0018-9499), 2006, 53(1): 270-278.
Liu Xinhao, Tanaka M, Okutomi M. Estimation of signal
dependent noise parameters from a single image [C]/
Proceedings of IEEE International Conference on Image
Processing, USA: IEEE, 2013: 79-82.

Hubbell J H, Seltzer S M. Tables of x-ray mass
attenuation coefficients and mass energy-absorption
coefficients from 1 keV to 20 MeV for elements z=1 to
92 and 48 additional substances of dosimetric interest
[DB/OL]. (2004-07) [2015-06-01]. http://www.nist.gov/
pml/ data/xraycoef/.

http: // www.china-simulation.com

<294 .

Published by Journal of System Simulation, 2017

13



	Progressive Image Denoising Algorithm
	Progressive Image Denoising Algorithm
	Abstract
	Keywords
	Authors
	Recommended Citation

	/var/tmp/StampPDF/WV1ORUUO9t/tmp.1688108042.pdf.Imwc9

