Journal of System Simulation

Volume 28 | Issue 11

Article 4

8-13-2020

Modeling and Control Simulation Research of Macro-micro 3-RPR Parallel Mechanism

Youxiong Xu Nanjing Institute of Technology, Nanjing 211167, China;

Zhou Hao Nanjing Institute of Technology, Nanjing 211167, China;

Songqing Zhu Nanjing Institute of Technology, Nanjing 211167, China;

Renjie Gu Nanjing Institute of Technology, Nanjing 211167, China;

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation.

Modeling and Control Simulation Research of Macro-micro 3-RPR Parallel Mechanism

Abstract

Abstract: According to the contradiction between the large stroke and high precision of the parallel mechanism, a novel macro-micro 3-RPR parallel mechanism was presented which used the electrohydraulic servo control system as the macro driven and used the piezoelectric precision control system as the micro driven. Then, the macro-micro coupling dynamic model of the macro-micro 3-RPR parallel mechanism was deduced by principle of Virtual work. Its multi-software co-simulation model was built, including Adams mechanical module, AMESim hydraulic and piezoelectric diver module, Matlab/ Simulink control module. According to the 3-RPR parallel mechanism characteristics of multi-input multi-output, nonlinear, strong coupling and so on, its control simulation research was conducted by using the fuzzy PID method. The simulation results show that compared with traditional PID, the single rod static and dynamic performance is improved by using the fuzzy control method and the macro-micro 3-RPR parallel mechanism can achieve high precision positioning of large stroke.

Keywords

macro-micro driven, 3-RPR, parallel mechanism, fuzzy PID, control simulation

Recommended Citation

Xu Youxiong, Zhou Hao, Zhu Songqing, Gu Renjie. Modeling and Control Simulation Research of Macromicro 3-RPR Parallel Mechanism[J]. Journal of System Simulation, 2016, 28(11): 2670-2676. 第 28 卷第 11 期 2016 年 11 月

宏微 3-RPR 并联机构建模及控制仿真研究

许有熊,周浩,朱松青,顾人杰

(南京工程学院, 南京 211167)

DOI: 10.16182/j.issn1004731x.joss.201611004

Modeling and Control Simulation Research of Macro-micro 3-RPR Parallel Mechanism

Xu Youxiong, Zhou Hao, Zhu Songqing, Gu Renjie

(Nanjing Institute of Technology, Nanjing 211167, China)

Abstract: According to the contradiction between the large stroke and high precision of the parallel mechanism, *a novel macro-micro 3-RPR parallel mechanism* was presented *which used the electrohydraulic servo control system as the macro driven and used the piezoelectric precision control system as the micro driven.* Then, the macro-micro coupling *dynamic model* of the macro-micro 3-RPR parallel mechanism was deduced by principle of Virtual work. *Its multi-software co-simulation model* was built, including Adams mechanical module, AMESim hydraulic and piezoelectric diver module, Matlab/Simulink control module. According to the 3-RPR parallel mechanism characteristics of multi-input multi-output, nonlinear, strong coupling and so on, *its control simulation research* was conducted by using *the fuzzy PID method*. The simulation results show that compared with traditional PID, the single rod static and dynamic performance is improved by using the fuzzy control method and the macro-micro 3-RPR parallel mechanism can achieve high precision positioning of large stroke. **Keywords:** macro-micro driven; 3-RPR; parallel mechanism; fuzzy PID; control simulation

引言

与串联机构相比,并联机构具有结构刚度大, 承载能力强、精度高、结构紧凑等优点得到了越来

收稿日期:2015-12-21 修回日期:2016-03-11; 基金项目:江苏省自然科学基金(BK20130743);江 苏省科技支撑计划基金(BE2014142); 作者简介:许有熊(1980-),男,福建晋江,博士, 副教授,研究方向为机电液一体化:周浩(1992-), 男,江苏徐州,硕士生,研究方向为机电系统集成。 越广泛的应用^[1]。为了满足高精度的精密定位需 求,出现了并联微动机构^[2]。并联微动机构虽然具 有很高的定位精度,但是其运动范围较小,这极大 限制了其实际工程应用。因此,国内外学者将宏微 混合驱动技术^[3-4]应用到并联机构,研究混合驱动 的大范围高精度并联机构。西安电子科技大学的段 学超等人^[5]研究的一种 FAST 宏微并联机器人系 统,其中宏动部分采用大跨度柔索驱动的并联机器

人以实现大范围的工作空间, 微动部分采用精密电动缸驱动的 Stewart 平台, 以实现精密定位, 采用自适应交互算法以实现 PID 参数的实时调整, 取得较好的定位精度和跟踪精度, 但由于微驱动的定位精度较低, 因此, 该宏微并联机器人不能满足高精度的定位要求。

为了解决并联机构大行程与高精度定位的矛 盾,本文结合电液伺服驱动^[6]与压电精密驱动^[7]技 术,应用到 3-RPR 平面并联机构,提出了一种基 于电液-压电混合伺服驱动的宏微并联机构,借助 于虚拟样机技术,建立起联合仿真模型,并采用模 糊 PID 对其进行了控制仿真研究。

1 宏微 3-RPR 并联机构工作原理

3-RPR 并联机构是一种由 3 个杆共同驱动、具 有 2 个平动和一个转动的平面并联机构,通过控制 3 个伸缩杆的伸出长度以控制动平台的转动和平 动,从而达到指定的位置。采用宏微两级混合驱动 的设计方法以实现 3-RPR 并联机构的大范围高精 度定位,提出了如图 1 所示的宏微驱动的 3-RPR 并联机构结构原理(P 为移动副、R 为转动副)^[8]。 其中,该并联机构的每个杆是由液压缸和压电陶瓷 驱动器串联而成;采用电液伺服阀控单杆液压缸作 为宏驱动以实现动平台的大范围运动,采用压电叠 堆型驱动器作为微驱动以补偿宏驱动的运动误差, 实现高精度定位。

压电叠堆型驱动器内置微位移传感器以实现 压电驱动器输出位移的测量和反馈控制,并串联连 接在液压缸活塞杆的末端;采用大行程高精度的直 线光栅位移传感器实现每个杆总驱动位移的测量 和反馈控制。其控制原理为:设置一个宏驱动与微 驱动的切换阈值,当定位误差大于该阈值时,宏驱 动系统运动;反之,微驱动系统运动,补偿宏驱动 系统的定位误差,实现高精度定位。

2 动力学建模

设所提的宏微 **3-RPR** 并联机构的定平台和动 平台均为正三角形,且动平台的边长为 2*l*,如图 1 所示,**3**个驱动杆的初始长度均为 L_0 。且在初始状 态下,**A**₁,**B**₁,**B**₂三点共线,取 A₁点为定平台所 在定坐标系的原点,取 B₁-B₂为动平台所在动坐标 系的 X'轴,取 B₁-B₂中点 P 为动坐标系的原点, 动坐标系相对于定坐标系的转角为 φ ,动平台 **3** 个 顶点在动坐标系下的坐标为 B₁(-l, 0), B₂(l, 0), B₃(0, $\sqrt{3} l$),以动平台中心点的坐标及偏转角度(x, y, φ)为目标输出。

宏微混合驱动的并联机构动力学模型是后续 研究其运动控制的理论基础。目前,常用的动力学 建模分析方法主要有:Newton-Euler法、Lagrange 方程、虚功原理、Kane 方程、Gauss 法等。不考虑 并联机构各转动副和移动副的间隙和摩擦,近似认 为并联机构是一个理想约束的质点系,因此适合采 用虚功原理进行建模。

2.1 3-RPR 动力学分析

所提出的宏微驱动 3-RPR 并联机构是由定平 台、动平台及 3 个杆组成,且每个杆都是有液压和 压电宏微混合驱动而成的,而压电驱动的作用是为 了补偿液压缸运动的位移。从宏观上看,它是由 3 个杆驱动而成的 3-RPR 并联机构。由图 1 所示的 原理图中,可以得出每个杆的矢量表达式为

$$\overline{A_iP} + \overline{PB_i} = \overline{A_iB_i}$$
 i=1,2,3 (1)
在 X、Y 方向的投影方程分别为

第 28 卷第 11 期 2016 年 11 月 J	系统仿 ournal of Sys	i真学报 tem Simulation	Vol. 28 No. 11 Nov., 2016
$r_{p} + PB_{c}\cos \phi = L_{c}\cos \theta_{c}$	(2)		
$v_{p} + PB \sin \alpha = L \sin \theta$	(2)	式中: F_x , F_y 为作用任幼十台上的列	、刀; <i>n_P 入</i> 作用 的
$y_p + i D_i \sin \varphi = D_i \sin \varphi_i$	(3)	在幼十百工的外刀起; m_p 为幼十百 动平台质心处的转动惯量	刊灰里; IP 八
式(2)~(3)两辺对时间微分,可得		切一百灰心处的将幼顶重。 同理 作田左冬杆的驱动力和标	曹性力素示为
$x_P - PB_i\varphi\sin\varphi = L_i\cos\theta_i - L_i\theta_i\sin\theta_i$	(4)	$\begin{bmatrix} E & m \\ i \end{bmatrix}$	从11774X小79
$\dot{y}_P + PB_i\dot{\varphi}\cos\varphi = L_i\sin\theta_i + L_i\theta_i\cos\theta_i$	(5)	F F F $m_s L_1$	(14)
由式(4)同乘 $\cos\theta_i$ 、式(5)同乘 $\sin\theta_i$,象	《后两式	$F_L = \begin{vmatrix} F_{L2} - m_s L_2 \\ F_{L2} & \ddot{F} \end{vmatrix}$	(14)
相加,并写成矩阵形式,可得		$\begin{bmatrix} F_{L3} - m_s L_3 \end{bmatrix}$	
$\dot{L}_i = J_{Pi} \dot{X}_P$	(6)	式中: F _{Li} 为各杆的驱动力, <i>i</i> =1, 2, 3	; <i>m</i> _s 为为各杆
其中 $J_{Pi} = [\cos\theta_i \ \sin\theta_i \ PB_i(\cos\varphi\sin\theta_i - \sin\varphi_i)]$	$p\cos\theta_i)]$	的质量(3个轴相同)。	
$\begin{bmatrix} \dot{x}_P \end{bmatrix}$		各杆的惯性力矩表示为	
$\dot{X}_P = \left \dot{y}_P \right $		$n_i = -I_i \ddot{ heta}_i$	(15)
$\lfloor \dot{arphi}_P floor$		式中: I_i 为为各杆的转动惯量。	
对于整个 3-RPR 并联机构来讲,可得		根据虚功原理可得各杆驱动力和	和动平台的动
$\begin{bmatrix} \dot{L}_1 \end{bmatrix}$		力学关系式为	
$\dot{L} = \begin{bmatrix} \dot{L}_2 \\ \dot{L}_3 \end{bmatrix} = J_P \dot{X}_P$	(7)	$\delta L^T F_L + \delta X_P^T F_P + \sum_{i=1}^3 \delta \theta_i^T n_i = 0$	(16)
其中, JP 为并联机构的速度雅可比矩阵。		式中: <i>δL</i> 为各杆伸长的虚位移; <i>δ</i>	X_P 为动平台虚
$\int \cos\theta_1 \sin\theta_1 PB_1(\cos\varphi\sin\theta_1 - \sin\varphi\cos\theta_1)$	$[\theta_1)$	位移; <i>δθ</i> 为各杆转动的虚位移。	
$J_{p} = \begin{vmatrix} \cos \theta_{1} & \sin \theta_{2} \\ \cos \theta_{3} & \sin \theta_{2} \end{vmatrix} PB_{2}(\cos \theta \sin \theta_{2} - \sin \theta \cos \theta_{3})$	$\left s \theta_{2} \right (8)$	由式(7)和式(9)可得虚位移关系	为
$\cos \theta_2 \sin \theta_2 - PB (\cos \varphi \sin \theta_2 - \sin \varphi \cos \theta_3)$	$\left[\frac{\partial}{\partial t} \right]^{2}$	$\delta L = J_P \delta X_P$	(17)
中式(4)同乘 sin (5)同乘 cos (4)	₩E亜弌	$\delta\theta_i = J_{\theta i} \delta X_P$	(18)
田式(4)两米-smo; 式(5)两米 coso; <i>※</i> 相加		将式(17)和式(18)代入式(16),(七简可得
$\dot{\theta} = J_{\alpha} \dot{X}_{\alpha}$	(9)	$L^{T}(E \rightarrow E) + E \rightarrow \frac{3}{2}L^{T}E$	(10)
t ₁ 。	(-)	$J_P (F_L + F_s) + F_P + \sum_{i=1}^{N} J_{\theta i} F_i = 0$) (19)
$\int -\sin\theta \cos\theta PB (\sin\theta) + \cos\theta \cos\theta$	θ	式(19)即为 3-RPR 并联机构的表	力学模型。根
$J_{\theta i} = \left[\begin{array}{c} \frac{1}{L_i} \\ L_i \end{array} \right] \frac{1}{L_i} \frac{1}{$	$\frac{1}{2}$ (10)	据此式可以进行正动力学和逆动力学	学求解。
对式(7)进行求导,可得	-	由于该并联机构的动力学模型	为复杂的非线

 $\ddot{L} = J_P \ddot{X}_P + \dot{J}_P \dot{X}_P$ (11) 同样地,对式(9)进行求导,可得

$$\ddot{\theta}_i = J_{\theta i} \dot{X}_P + \dot{J}_{\theta i} \dot{X}_P \tag{12}$$

根据并联机构的实际工作情况,假设负载外力 和外力矩都作用在动平台上,则作用在动平台的外 力和惯性力表示为

$$F_{P} = \begin{bmatrix} F_{x} - m_{P} \ddot{x}_{P} \\ F_{y} - m_{P} \ddot{y}_{P} \\ n_{P} - I_{P} \ddot{\varphi}_{P} \end{bmatrix}$$
(13)

田士该开联机构的动力字模型为复杂的非线 性模型,很难通过解析求解以获得其动态过程,且 所采用的液压缸为不对称缸,也不易获得其传递函 数。因此,采用虚拟样机仿真技术以获得宏微驱动 的 3-RPR 的动态特性。

控制仿真研究 3

3.1 联合仿真模型搭建

所提的宏微驱动 3-RPR 并联机构涉及机械、 液压、压电、控制等学科。很难通过单一的仿真

软件模拟出该并联机构的真正运动状态,因此需 要采用多个软件协同来模拟实际运动状况。鉴于 Adams,AMESim,MATLAB/Simulink软件在多 体动力学仿真、液压仿真、控制系统仿真等独特优 势^[9],为建立所提 3-RPR并联机构的虚拟样机,将 整个仿真模型分为基于 Adams 的机构模型、基于 AMESim 的液压与压电驱动模型、基于 MATLAB/Simulink的控制模型,如图 2 所示。通 过各软件之间的接口,将上述的 3 种模型联合在一 起,并以Matlab/Simulink作为主平台进行联合仿真。

3.2 模糊 PID 控制器设计与实现

由于宏驱动电液控制系统具有非线性、时变、 外负载干扰等特点和微驱动压电控制系统具有迟 滞、蠕变等非线性特性,使得基于电液-压电混合 伺服驱动 3-RPR 并联机构是个复杂的多输入多输 出非线性系统,具有多变量、多自由度、多参数耦 合、时变等特点,其控制问题十分复杂。因此,需 要对其进行混合伺服控制策略的研究,以实现并联 机构快速精密定位。

与常规 PID 相比,模糊 PID 控制算法能根据 模糊规则推理出所需 PID 三个参数,能消除系统 参数不确定性对控制系统的影响,实现良好的控制 效果。

3-RPR 是由三根杆共同驱动而成,每个杆的控制方法都是相同的。由于每个杆都由电液伺服系统和压电驱动系统组成,因此采用两个模糊 PID 控制器分别对电液伺服系统和压电驱动系统进行控制,其控制原理框图如图 3 所示。

http://www.china-simulation.com

• 2673 •

Xu et al.: Modeling and Control Simulation Research of Macro-micro 3-RPR Par

第 28 卷第 11 期	系统仿真学报	Vol. 28 No. 11
2016年11月	Journal of System Simulation	Nov., 2016

图 3 单杆模糊 PID 控制原理框图

其控制过程为:通过设定值与单杆输出值之间 的误差值与人为设定的切换阈值进行比较以切换 宏、微驱动的工作状态;然后将误差值和误差变化 率输入到模糊 PID 控制器,根据模糊规则推理 PID 的 3 个修正参数 ΔK_p , ΔK_I , ΔK_D , 并通过式(20) 在线修改得到最新的 PID 参数^[10],从而控制伺服 阀或压电陶瓷的功率放大器。

$\int K_P = K_{P0} + \Delta K_P$	
$\begin{cases} K_I = K_{I0} + \Delta K_I \end{cases}$	(20)
$\left(K_D = K_{D0} + \Delta K_D\right)$	

所采用模糊 PID 控制器输入变量,输出变量 的模糊子集为{NB, NM, NS, ZE, PS, PM, PB}。 考虑到并联机构实际工作状态,相应的输入输出 变量的物理论域为: *e* 和 *ec*: [-0.2, 0.2]、Δ*K*_{*p*}: [-450, 450]、Δ*K*_{*I*}: [-0.05, 0.05]、Δ*K*_{*D*}: [-0.025, 0.025]; 模糊论域均为: {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}。具体地,模糊 PID 控制器 3 个输 出参数的模糊规则 Δ*K*_{*p*}, Δ*K*_{*I*}, Δ*K*_{*D*} 如表 1~3 所示。

	N IZ	_			ес			
ΔKp		NB	NM	NS	ZE	PS	PM	PB
	NB	PB	PB	PM	PM	PS	ZE	ZE
	NM	PB	PB	PM	PS	PS	ZE	NS
	NS	PM	PM	PM	PS	ZE	NS	NS
е	ZE	PM	PM	PS	ZE	NS	NM	NM
	PS	PS	PS	ZE	NS	NS	NM	NM
	PM	PS	ZE	NS	NM	NM	NM	NB
	PB	ZE	ZE	NM	NM	NM	NB	NB

表 1	∧Kn 樟糊 规则表

			表 2 /	ΔK_I 模料	胡规则	表		
ΔK_I					ес			
		NB	NM	NS	ZE	PS	PM	PB
	NB	NB	NB	NM	NM	NS	ZE	ZE
	NM	NB	NB	NM	NS	NS	ZE	ZE
	NS	NB	NM	NS	NS	ZE	PS	PS
е	ZE	NM	NM	NS	ZE	PS	PM	PM
	PS	NM	NS	ZE	PS	PS	PM	PB
	PM	ZE	ZE	PS	PS	PM	PB	PB
	PB	ZE	ZE	PS	PM	PM	PB	PB
主 2 4 7 楼棚相同时主								

ΔK_D		ес						
		NB	NM	NS	ZE	PS	PM	PB
	NB	PS	NS	NB	NB	NB	NM	PS
	NM	PS	NS	NB	NM	NM	NS	ZE
	NS	ZE	NS	NM	NM	NS	NS	ZE
е	ZE	ZE	NS	NS	NS	NS	NS	ZE
	PS	ZE						
	PM	PB	ZS	PS	PS	PS	PS	PB
	PB	PB	PM	PM	PM	PS	PS	PB

3.3 控制仿真研究

先对宏微驱动并联机构的单杆分别进行模糊 PID 和常规 PID 的仿真研究,以验证上述所提模糊 PID 控制器的有效性。在保证上述联合仿真模型准 确性的基础上,通过理论分析计算,合理设置仿真 参数,如表4所示。

表 4	主要仿真参数表	
名称	数值	单位
油源压力	20	MPa
压电陶瓷额定电压	150	V
压电陶瓷输出位移	100	μm
液压缸行程	0~200	mm
活塞杆直径	22	mm
活塞直径	40	mm
伺服阀阻尼比	0.8	
伺服阀额定流量	30	L/min
负载质量	1	kg

在上述仿真参数下,单杆常规 PID 和模糊 PID 控制的动态响应过程如图4所示。从图4可以看出,

常规 PID 和模糊 PID 控制的稳态误差都小,但常规 PID 响应时间较长,在宏微切换过程中,有明显振荡和超调过程;而采用模糊 PID 控制后,响应时间缩短,在宏微切换过程中,几乎无超调,控制效果较好。从上述比较可以看出,模糊 PID 控制的控制效果优于常规 PID 控制。

在上述单杆控制方法研究的基础上,对宏微驱动 3-RPR 并联机构进行联合控制研究。其控制过程为:根据给定动平台的运动轨迹经过运动学逆解出各杆的理论伸长量从而控制液压缸和压电驱动器运动,并经过单杆总输出位移的反馈,使得各杆精确到理论伸长值,此时动平台也精确运动到所设定的位姿。

设动平台从起始位置(0 mm, 0 mm, 0°)(此时, 3 个液压缸和 3 个压电都没有输出)运动到定位点 目标为(-5 mm, -10 mm, -60°),在上述的仿真参 数下,宏微切换阈值为 100 μm 时,动平台的运动 过程曲线如图 5~7 所示。从图 6~8 可以看出,启 动后,动平台快速运动到接近预定目标点,当每个 杆进行宏微切换时,动平台就进行一次精密的位姿 微调,如图 5(b),图 6(b),图 7(b)所示,直到运动 指定的目标点,最终的稳态误差为(±0.2 μm, ±0.2 μm,±0.000 2°),达到亚微米的控制精度;另外, 从宏微切换过程来看,整个过程没有超调或振荡, 也验证了所采用的双模糊 PID 控制方法的有效性, 取得了预期的控制目标。

第28卷第11期 2016年11月

4 结论

针对采用单驱动方式的并联机构不能同时满 足大行程与精密定位的需求,结合电液伺服控制 系统和压电控制系统的优点,提出了一种基于电 液-压电混合驱动的 3-RPR 并联机构。采用虚功原 理,推导出了宏微驱动的 3-RPR 并联机构的宏微 动力学模型。鉴于宏微驱动的 3-RPR 并联机构的宏微 动力学模型。鉴于宏微驱动的 3-RPR 并联机构涉 及机械、液压、控制等学科,采用基于 AMESim、 ADAMS 和 Matlab/Simulink 联合仿真平台研究其 协同仿真模型。针对该机构是个复杂的多输入多输 出非线性系统,采用参数自整定模糊 PID 控制算 法进行仿真研究。仿真表明所提出的宏微 3-RPR 并联机构能实现大行程、高精度定位。

参考文献:

- [1] 冯李航, 张为公, 龚宗洋, 等. Delta 系列并联机器人研 究进展与现状 [J]. 机器人, 2014, 36(3): 375-384.
- Bashash S, Jalili N. Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages [J]. IEEE/ASME Transaction on Mechatronics (S1083-4435), 2009, 14(1): 11-20.
- [3] Shinno H, Yoshioka H, Sawano H. A newly developed long range positioning table system with a sub-nanometer resolution [J]. CIRP Annals - Manufacturing Technology, 2011, 60(1): 403-406.
- [4] 刘定强,黄玉美,谢礼,等. 压电型宏微双驱动精密定 位系统点位协调控制 [J]. 农业机械学报, 2011, 42(4): 220-223.
- [5] 段学超, 仇原鹰, 段宝岩. 宏微并联机器人系统自适应交 互 PID 监督控制 [J]. 机械工程学报, 2010, 46(1): 10-17.
- [6] 柏艳红,陈聪,孙志毅. 基于 AMESim 的电液阀控缸 系统线性化分析 [J]. 系统仿真学报, 2014, 26(7): 1430-1434.
- [7] Gu Guoying, Zhu Limin, Su Chunyi, et al. Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages [J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 2014, 20(4): 1956-1965.
- [8] 许有熊, 顾人杰, 曹宁, 等. 宏微混合驱动的 3-RPR 并 联机构虚拟样机研究 [J]. 液压与气动, 2015(3): 63-66.
- [9] 魏建华,杜恒,方向,等.基于 ADAMS/Simulinks/ AMESim 的油气悬架道路友好性分析 [J]. 农业机械 学报,2010,41(10): 11-17.
- [10] 高晨, 马文涛, 张庆振. 基于模糊 PID 的直/气复合再入 控制方法研究 [J]. 系统仿真学报, 2010, 22(1): 146-148.

http://www.china-simulation.com

仿真 理论

0.14

0.15

59.8 ∟ 0.12

0.13

时间/s

(b) 切换过程局部放大

图 7 动平台转动曲线