Journal of System Simulation

Volume 28 | Issue 9

Article 25

8-14-2020

Modelling of Boom Crane Loading System of Marine Engineering Ship

Helong Shen Key Lab. of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China;

Yin Yong Key Lab. of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China;

Xiujie Wang Key Lab. of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China;

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation.

Modelling of Boom Crane Loading System of Marine Engineering Ship

Abstract

Abstract: Development of ocean resources has a high degree dependence on marine engineering equipment. Among them, marine engineering ship has been widely used in many areas. Cranes on ship play an important role on transferring cargoes. The boom crane which is the most common crane on marine engineering ship was chosen as researching object. According to its real motion law, the crane system's motion model was built with Lagrange equation which was solved with Fourth-order Runge-Kutta. The dynamics characteristics of the crane in different forms of work were analyzed.

Keywords

boom crane loading simulator system, boom crane motion model, lagrange equation, dynamics characteristic

Recommended Citation

Shen Helong, Yin Yong, Wang Xiujie. Modelling of Boom Crane Loading System of Marine Engineering Ship[J]. Journal of System Simulation, 2016, 28(9): 2090-2095.

第 28 卷第 9 期 2016 年 9 月

海洋工程船克令吊装卸仿真系统的运动模型

神和龙,尹勇,王秀杰

(大连海事大学航海动态仿真和控制交通行业重点实验室,大连116026)

摘要:海洋资源的开发对海洋工程设备有着高度的依赖性,其中海洋工程船应用领域广泛,船舶上 常用的设备克令吊对货物的移动起到至关重要的作用。选取海洋工程船上最为常见的*挺杆式克令吊* 为研究对象,根据其运动规律,*利用拉格朗日方程建立克令吊系统的运动模型,并采用四阶龙格库 塔方法对模型进行求解,分析了克令吊在不同作业形式下的动力学特性,并对模型进行了验证。* 关键词:克令吊装卸仿真系统;挺杆式克令吊运动模型;拉格朗日运动方程;动力学特性 中图分类号:TP391.9 文献标识码:A 文章编号:1004-731X (2016) 09-2090-06

Modelling of Boom Crane Loading System of Marine Engineering Ship

Shen Helong, Yin Yong, Wang Xiujie

(Key Lab. of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China)

Abstract: Development of ocean resources has a high degree dependence on marine engineering equipment. Among them, marine engineering ship has been widely used in many areas. Cranes on ship play an important role on transferring cargoes. The boom crane which is the most common crane on marine engineering ship was chosen as researching object. *According to its real motion law, the crane system's motion model was built with Lagrange equation which was solved with Fourth-order Runge-Kutta. The dynamics characteristics of the crane in different forms of work were analyzed.*

Keywords: boom crane loading simulator system; boom crane motion model; lagrange equation; dynamics characteristic

引言

海洋资源是具有战略意义的新兴领域,有着巨大的开发潜力^[1]。开发海洋资源对工程设备有着高度的依赖性,海洋工程船是为离岸作业工程提供服务的一系列船舶的统称^[2]。起重船是海洋工程中常用的工程船舶,应用领域广泛,是港口船舶装卸作业、港建水工作业、桥梁建设以及各种海上建筑物建造和安装的必备工具,属于工程船的一种。在起

收稿日期: 2016-05-02 修回日期: 2016-07-11; 基金项目: 863 课题(2015AA016404),海洋公益性行 业科研专项(201505017-4),中央高校基本科研业务费 (3132016310);

作者简介:神和龙(1984-),男,山东,博士,讲师,研究方向为虚拟现实、航海动态仿真技术。

重船上工作的起重机又称吊车, 克令吊是外来词, 主要用于各种物料的起重、搬运、装卸等。海上作 业时,起重船受到风浪的影响发生运动,进而激励 吊臂,使悬吊重物发生摆动。建立起重船的吊重系 统动态响应计算模型,分析吊重的运动轨迹,对于 起重船的高效和安全作业具有重要意义。

二十世纪 60 年代以来,国内外研究学者对起 重机吊摆系统的数学模型进行了大量的研究。如 Ziad N.Msaoud 和 Alih.Nayfeh 根据实际集装箱起 重机系统,建立了带有四根吊绳的平面吊摆系 统^[3];Henry R J 等建立了一个由无质量的刚性索和 集中质点组成的平面单摆模型,对吊重的摆动进行 了分析^[4];Elling 和 Mcdlinton 把安装在船上的挺 杆式起重机视为锥形的空间摆模型,考虑了由于船 第28卷第9期 2016年9月

体的运动而引起的负载摆动影响,得到了谐振状态 下负载系统的运动微分方程^[5];国内的李伟等人建 立了桥式起重机吊摆系统的参变振动模型^[6];大连 海事大学航海动态仿真模拟实验室赵猛等人根据 拉格朗日方程建立了集装箱吊具装卸的 4 自由度 数学模型^[7]。然而据统计资料表明,海洋工程船上 安装最多的是一种带有底座,可以进行回转、俯仰 和吊物升降运动的挺杆式克令吊,所以本文针对此 类克令吊进行研究,运用拉格朗日运动学方程^[8-10] 建立了海洋工程船吊物系统的非线性动力学模型, 通过数值仿真的方法分析了吊绳长度、吊臂加速度、 吊物的质量等因素对吊物系统动力响应的影响。

1 克令吊吊摆系统的动力学模型

对于实际的克令吊吊摆系统来说,它的模型是 非常复杂的,除了自身系统的非线性外,在作业的 过程中还会受到诸如风、浪的干扰。为了方便分析 系统的动力学特性,同时也保证其模型能有效的反 映实际系统运动形式,对挺杆式克令吊吊摆系统进 行如下简化处理:

1) 把吊绳视为刚性绳, 忽略其质量;

2) 吊臂视为刚体;

3) 忽略克令吊内各机构间的摩擦。

根据上述假设,将图1所示的实际模型简化为 图2所示的几何模型,用回转角α和俯仰角β来描 述克令吊系统吊杆的运动,L_b为吊臂长度。图2 中P点坐标设为(x_p, y_p, z_p),则有:

图1 起重船克令吊

图 2 广义坐标系的建立

$$\begin{cases} x_p = L_b \sin \alpha \cos \beta \\ y_p = L_b \cos \alpha \cos \beta \\ z_p = L_b \sin \beta \end{cases}$$
(1)

设吊物Q在该坐标系下的位置为(xo, yo, zo),

则有**:**

$$\begin{cases} x_Q = L_b \sin \alpha \cos \beta + l \sin \theta_1 \cos \theta_2 \sin \alpha + l \sin \theta_2 \cos \alpha \\ y_Q = L_b \cos \alpha \cos \beta + l \sin \theta_1 \cos \theta_2 \cos \alpha - l \sin \theta_2 \sin \alpha \\ z_Q = L_b \sin \beta - l \cos \theta_1 \cos \theta_2 \end{cases}$$
(2)

式中的 θ_1 , θ_2 , α , β 都是时间的函数,考虑绳长 *l* 也 是时间的函数,则对位移求导:

http://www.china-simulation.com

制

Shen et al.: Modelling of Boom	Crane Loading System o	f Marine Engineering Ship
--------------------------------	------------------------	---------------------------

第 28 卷第 9 期 2016 年 9 月 J	系统仿真学报 ournal of System Simulation	Vol. 28 No. 9 Sep., 2016
F_{damp} =rv 式中: $r = -6\pi\eta R$ 。其中 η 为介质的粘性 为物体的等效半径; v 为物体的运动速度。 的动能和势能的表达式为:	(4) 系数; R 则系统 $\dot{\theta}_{2=}-2\dot{\theta}_{2}\frac{\dot{l}}{l}$ 之 $\dot{\alpha}\dot{\beta}\frac{L}{l}$	$-\frac{g}{l}\cos\theta_{1}\sin\theta_{2} - \dot{\theta}_{1}^{2}\cos\theta_{2}\sin\theta_{2} + \frac{b}{l}\sin\beta\cos\theta_{2} - \dot{\beta}^{2}\frac{Lb}{l}\cos\beta\sin\theta_{1}\sin\theta_{2} + \frac{b}{l}\sin\theta_{2} + \frac{b}{l}$
$\begin{cases} T = \frac{1}{2}m(\dot{x}_{Q^2} + \dot{y}_{Q^2} + \dot{z}_{Q^2}) \\ V = mg(L_b\sin\beta - l\cos\theta_1\cos\theta_2) - r\dot{\theta}_1(l\sin\theta_1\cos\theta_2\sin\alpha + l\sin\theta_2\cos\beta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_1(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_1(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_2(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_2(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_1(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) - r\dot{\theta}_2(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_2) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_1) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_1) \\ \dot{\theta}_2(l\sin\theta_1\cos\theta_1) \\ \dot{\theta}_2(l\sin\theta_1) \\ \dot{\theta}_2(l\sin\theta_1)$	(5) $\frac{L_b}{l}\dot{\beta}^2$	$\sin\beta\cos\theta\sin\theta_{1}\sin\theta_{2} - \frac{L_{b}}{l}\ddot{\beta}\sin\beta\sin\theta_{1}\sin\theta_{2} - \cos\beta\cos\theta_{1}\sin\theta_{2} - 2\dot{\alpha}\frac{\dot{l}}{l}\sin\theta_{1} + \frac{1}{2}\sin\theta_{1} + $
$ \left\{ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) - \frac{\partial L}{\partial \theta_1} = 0 \right\} $	(6) $i^{2} \frac{L_{b}}{2b}$	$\cos\theta_1\cos^2\theta_2 - \ddot{\alpha}\sin\theta_1 - \ddot{\alpha}\frac{L_b}{l}\cos\beta\cos\theta_2 - \\ \cos\theta_1\cos\theta_2 - \dot{\alpha}\sin\theta_1 - \dot{\alpha}\frac{L_b}{l}\cos\theta_2 + \dot{\alpha}^2\cos\theta_2 + \dot{\alpha}$
$ \left \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}_2} \right) - \frac{\partial L}{\partial \theta_2} \right = 0 $ $ \vec{x} \oplus : L = T - V.$ $ \mathbf{a}_{\mathrm{f}} = \mathbf{x} \oplus \mathbf{x}$	$\frac{r}{ml^2}(-\frac{r}{ml^2})$	$-\dot{\theta}_1 l \sin \theta_1 \sin \theta_2 \sin \alpha + \dot{\theta}_1 l \cos \theta_2 \cos \alpha - \frac{1}{2}$
$\ddot{\theta}_{1} = -2\dot{\theta}_{1}\frac{\dot{l}}{l} + 2\dot{\theta}_{1}\dot{\theta}_{2}\frac{\sin\theta_{2}}{\cos\theta_{2}} - \frac{g\sin\theta_{1}}{l\cos\theta_{2}} + \frac{L_{b}}{l\cos\theta_{2}}\dot{\beta}^{2}\cos\theta_{1}\cos\beta + \frac{L_{b}}{l\cos\theta_{2}}\dot{\beta}^{2}\cos\theta_{1}\cos\theta_{1}\cos\beta + \frac{L_{b}}{l\cos\theta_{2}}\dot{\beta}^{2}\cos\theta_{1}$	$\frac{\theta_{2l} \sin \theta_{2l}}{ml^2}$ (\dot{l} sin θ_{2l}	$i\theta_1 \sin \theta_2 \cos \alpha - \theta_2 (\cos \theta_2 \sin \alpha) - \frac{1}{2} \sin \theta_1 \cos \theta_2 \cos \alpha - \frac{1}{2} \sin \theta_1 \cos \theta_2 \cos \alpha - \frac{1}{2} \sin \theta_1 \cos \theta_2 \sin \alpha - \frac{1}{2} \sin \theta_1 \sin \theta_1 \cos \theta_2 \sin \alpha - \frac{1}{2} \sin \theta_1 \sin$
$\frac{L_b}{l\cos\theta_2}\ddot{\beta}\cos\theta_1\sin\beta +$	i sin θ2	$e^{i\sin\alpha - l\dot{\theta}_2 \cos\theta_2 \sin\alpha - l\dot{\alpha} \sin\theta_2 \cos\alpha}$
$2\dot{\alpha} \frac{\dot{l}}{l\cos\theta_2}\cos\theta_1\sin\theta_2 + \frac{L_b}{l\cos\theta_2}\dot{\beta}^2\sin\theta_1\sin\beta - \frac{L_b}{l\cos\theta_2}\ddot{\beta}\sin\theta_1$ $2\dot{\alpha}\dot{\theta}_2\cos\theta_1 + \ddot{\alpha}\frac{\cos\theta_1}{\cos\theta_2}\sin\theta_2 + \frac{L_b}{l\cos\theta_2}\dot{\alpha}^2\cos\theta_1\cos\beta + \dot{\alpha}^2\sin\theta_1\cos\theta_1$	 2 1/1 具 根据式 cos β + 方程有较高 求解上述領 看出,影响 (1)克 + (2)克 (3)重 	5百米与分析 (11],利用四阶龙格库塔法求解微分 高的精确度,所以选择四阶龙格库塔方法 做分方程。从吊摆系统的动力学方程可以 吊摆系统的主要因素可分为如下几方面: (令吊的回转运动; (令吊的俯仰运动; 动的升降运动。)
$\frac{r}{ml\cos\theta_2}(\dot{\theta}_1\cos\theta_1\sin\alpha+\dot{\theta}_2\cos\theta_1\cos\alpha)$	x)- 2.1 回转: 设品物	运动下吊摆系统的分析 勿的质量 m 为 1 000 kg,吊绳的长度为
$\frac{r}{ml^2\cos\theta_2}(\dot{l}\sin\alpha\sin\theta_1\cos\theta_2 + l\dot{\theta}\sin\alpha\cos\theta_2) + l\dot{\theta}\sin\alpha\cos\theta_2 + \dot{\theta}\sin\alpha\sin\theta_2 + \dot{\theta}\sin\alpha\cos\theta_2 + \dot{\theta}\sin\alpha\sin\theta_2 + \dot{\theta}\sin\alpha\cos\theta_2 + \dot{\theta}\sin\theta_2 + \dot{\theta}^2 + \dot{\theta}^2 + \dot{\theta}^2 + \dot{\theta}^2 + \dot{\theta}^2 + \dot{\theta}^2 + $	20 m,旋 0.06 rad/s,	转加速分别为 0.02 rad/s, 0.04 rad/s, 加速时间为 5 s, 则吊摆的平面内角 θ_1
$l\theta_{1} \sin \alpha \cos \theta_{1} \cos \theta_{2} - l\theta_{2} \sin \alpha \sin \theta_{1} \sin \theta_{1} \sin \theta_{1} \sin \theta_{1} \cos \alpha \sin \theta_{1} \cos \theta_{2} + \dot{l} \cos \alpha \sin \theta_{2} + \dot{\theta}_{2} l \cos \alpha \cos \theta_{2} - l\dot{\alpha} \sin \alpha \sin \theta_{2})$	 θ₂ + 和平面外角 以看出在一 度越大; 	自 θ ₂ 的响应规律分别如图 3~4 所示,可 一定范围内旋转角加速度越大,摆动的角 改变吊绳的长度,固定旋转角加速度为

http://www.china-simulation.com

第28卷第9期 2016年9月

0.02 rad/s,则平面内角和平面外角响应规律分别为 图 5~6 所示,可以看出在一定范围内平面内摆角随 着绳长的增加而减小,而平面外摆角随着绳长的增 加而变大;改变吊物的质量,设吊物质量分别为 100 kg 和 1 000 kg,旋转角速度设定为 0.02 rad/s, 平面内摆角和平面外摆角响应规律分别如图 7~8 所示,可以看出在一定范围内质量越大,摆角越大, 但摆动的幅度差不是很大。

图 5 面内角 *θ*₁ 随绳长的变化

2.2 俯仰运动下吊摆系统的分析

俯仰角加速度设为 0.02 rad/s, 0.03 rad/s, 0.04 rad/s, 加速时间为 5 s, 则吊摆平面内摆角的 响应规律如图 9 所示,可以看出平面内摆角在一定 范围内随着速度的增大而变大;通过数据分析,平 面外摆角一直为 0;改变吊绳长度,固定俯仰角加

http://www.china-simulation.com

^{• 2093 •}

第28卷第9期	系统仿真学报	Vol. 28 No. 9
2016年9月	Journal of System Simulation	Sep., 2016

速度为 0.02 rad/s, 平面内摆角的响应规律如图 10 所示,可以看出在一定范围内绳长越长,摆角越大。

2.3 重物升降运动

重物仅作升降运动时,吊臂的回转角 α 和俯仰 角 β 不变,重新求解方程后发现平面内摆角和平面 外摆角均保持为 0。

2.4 仿真结果的验证

为验证本文模型的准确度和合理性,将仿真结 果与文献[12]中模型试验结果进行比对分析。设定 初始回转角加速度为 0.08rad/s 时的仿真图进行比 较:文献[12]中摆角周期在 10s 左右,本文仿真结 果的摆角周期也在 10 s 左右;文献[12]中面内角幅 值在±0.5 rad,本文面内角幅值也在±0.5 rad,文献 [12]中面外角幅值在±0.3 rad,本文面外角幅值也在 ±0.3 rad。通过对比发现吊绳摆角在幅值、周期上 都和文献[12]的结果吻合。论文所建立的克令吊运 动数学模型已经初步应用于所开发的海洋工程船 仿真系统中,图 11~12 分别为回转运动和俯仰运动 的系统截图。

图 11 克令吊回转运动仿真

图 12 克令吊俯仰运动仿真

3 结论

克令吊装卸仿真系统是虚拟现实技术在生产 培训领域中的典型应用。挺杆式克令吊在海洋工程 船上是最常见、应用种类最多的一种克令吊,论文 以其为研究对象,根据挺杆式克令吊的运动规律, 利用拉格朗日方程建立了系统的运动模型,并验证 了所建模型的准确性。论文所建立的克令吊运动数 学模型已经初步应用于所开发的海洋工程船仿真 系统中,以后将研究在真实海况下船舶运动模型和 克令吊动力学模型的耦合运动。本文仅对船用克令 吊运动数学模型进行研究,克令吊运动在不考虑船 舶姿态变化的情况下与其他工程机械吊有类似之 处,本文方法也可应用于其他工程机械设备的仿真 模拟中。

参考文献:

- [1] 鹿守本. 海洋资源与可持续发展 [M]. 北京: 中国科 学技术出版社, 1999: 2-3.
- [2] 百度百科.海洋工程船 [EB/OL]. (2016-03-03)
 [2016-05-02]. http://baike.baidu.com/view/1883025.htm?
 fr = Aladdin, 2014.

(下转第2100页)