Journal of System Simulation

Volume 36 | Issue 4

Article 17

4-15-2024

A Multi-UAV Collaborative Priority Coverage Search Algorithm

Xiang Yu

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, yuxiang@cqupt.edu.cn

Qianrui Deng

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, S210101021@stu.cqupt.edu.cn

Sirui Duan

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Chen Jiang

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation. For more information, please contact xtfzxb@126.com.

A Multi-UAV Collaborative Priority Coverage Search Algorithm

Abstract

Abstract: For the challenges such as large disaster area, uneven distribution of key areas and limited rescue time in emergency rescue, a multi-UAV collaborative priority coverage search algorithm is proposed. The search area is rasterized, and each grid is probabilistically labeled according to the disaster prediction information. The search area is divided into sub-regions of similar size and equal number of UAVs by K-means++ algorithm, and the search starting point of each sub-region is determined based on the clustering center, so that the multiple UAVs can carry out the partition cooperative search of the whole area. The score of each grid is calculated according to the balance between grid probability and current distance, which is used as a benchmark by the improved greedy algorithm for priority search and reducing the duplicate paths in the sub-region, while A* algorithm is introduced to solve the grid score redundancy problem. The results show that the proposed algorithm effectively reduces the path length and search time while ensuring the priority search, and provides an effective solution to the search problem in emergency rescue.

Keywords

multi-UAVs, K-means++, regional segmentation, collaborative search, improved greedy algorithm, A* algorithm

Recommended Citation

Yu Xiang, Deng Qianrui, Duan Sirui, et al. A Multi-UAV Collaborative Priority Coverage Search Algorithm[J]. Journal of System Simulation, 2024, 36(4): 991-1000.

第 36 卷第 4 期	系统仿真学报©	Vol. 36 No. 4
2024年4月	Journal of System Simulation	Apr. 2024

一种多无人机协同优先覆盖搜索算法

余翔,邓千锐^{*},段思睿,姜陈 (重庆邮电大学 通信与信息工程学院,重庆 400065)

摘要:针对应急救援行动中存在的受灾区域大、重点区域分布不均匀、救援时间有限等问题,提 出一种多UAV协同区域优先覆盖搜索算法。对搜索区域进行离散栅格化处理,根据灾情预估信息 对搜索区域中的每个网格进行概率标记;通过K-means++聚类算法将搜索区域划分成大小相似、 个数与UAV数量相等的子区域,依据聚类中心确定每个子区域的搜索起点,使多架UAV分区协同 搜索整个区域;根据网格概率和当前距离之间的平衡关系计算出每个网格的分数,改进贪心算法, 以此分数为基准在子区域中进行优先搜索和减少重复路径,引入A*算法解决网格分数冗余问题。 仿真结果表明:所提算法在保证优先搜索的同时缩短了路径长度和搜索时间,为应急救援中的搜 索难题提供了一种有效的解决办法。

关键词: 多无人机; K-means++; 区域划分; 协同搜索; 改进贪心算法; A*算法

中图分类号: TP391.9 文献标志码: A 文章编号: 1004-731X(2024)04-0991-10 DOI: 10.16182/j.issn1004731x.joss.22-1476

引用格式: 余翔, 邓千锐, 段思睿, 等. 一种多无人机协同优先覆盖搜索算法[J]. 系统仿真学报, 2024, 36(4): 991-1000. **Reference format:** Yu Xiang, Deng Qianrui, Duan Sirui, et al. A Multi-UAV Collaborative Priority Coverage Search Algorithm[J]. Journal of System Simulation, 2024, 36(4): 991-1000.

A Multi-UAV Collaborative Priority Coverage Search Algorithm

Yu Xiang, Deng Qianrui^{*}, Duan Sirui, Jiang Chen

(School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

Abstract: For the challenges such as large disaster area, uneven distribution of key areas and limited rescue time in emergency rescue, a multi-UAV collaborative priority coverage search algorithm is proposed. The search area is rasterized, and each grid is probabilistically labeled according to the disaster prediction information. The search area is divided into sub-regions of similar size and equal number of UAVs by K-means++ algorithm, and the search starting point of each sub-region is determined based on the clustering center, so that the multiple UAVs can carry out the partition cooperative search of the whole area. The score of each grid is calculated according to the balance between grid probability and current distance, which is used as a benchmark by the improved greedy algorithm for priority search and reducing the duplicate paths in the sub-region, while A* algorithm is introduced to solve the grid score redundancy problem. The results show that the proposed algorithm effectively reduces the path length and search time while ensuring the priority search, and provides an effective solution to the search problem in emergency rescue.

Keywords: multi-UAVs; K-means++; regional segmentation; collaborative search; improved greedy algorithm; A* algorithm

收稿日期: 2022-12-09 修回日期: 2023-02-06

基金项目:重庆市教委科学技术研究项目(KJQN202000615)

第一作者:余翔(1964-),男,正高级工程师,博士,研究方向为移动通信系统。E-mail: yuxiang@cqupt.edu.en

通讯作者: 邓千锐(1996-), 男, 硕士生, 研究方向为无人机路径规划。E-mail: S210101021@stu.cqupt.edu.cn

第 36 卷第 4 期 2024 年 4 月

0 引言

在我国,地质灾害有着发生频率高、涉及区 域大、受影响程度深且灾情发展迅速等特点^[1]。当 地震、泥石流、洪水,以及雪崩等大型自然灾害 发生时,会对当地的交通道路造成严重的损坏, 救援队无法立即到达灾区。大部分的地质灾害多 发生在复杂的山区,各区域受灾程度不同且分散, 盲目地调派救援队前往,可能造成人员、物资和 时间上的不合理分配,从而错过最佳救援时间。 地震发生后的72h为黄金救援时间^[2],埋藏时间大 于60 min的雪崩受害者存活率仅有19%^[3]。

无人机因其灵活性高、体积小和空中视野广 等优点,在应急救援领域得到广泛应用^[4]。无人机 能够搭载远焦红外热成像仪和长焦摄像头,飞到 灾区上空搜索被困人员和拍摄现场视频,再由通 信模块实时回传给地面控制中心,由专业人员依 据受灾情况进行合理的物资分配和救援人员调度, 以保证搜索和救援同时进行,从而提高救援成 功率。

覆盖路径规划(coverage path planning, CPP)常 被应用于区域搜索,即将搜索区域分解成大小相 同的单元格并以一定的运动模式遍历完所有单元 生成路径,常用的运动模式有之字形路径^[5]、螺旋 线形路径^[6]。传统覆盖搜索默认所有单元格的优先 级相同,并运用上述运动模式搜索整个区域。这 种搜索方式会在可能性较小的单元格上浪费时间, 不适用于应急救援。当某地发生灾害后,一般可 根据该地的历史受灾情况以及实际环境特征进行 各区域受灾程度预测,并标记出重点和非重点区 域,从而构建一张概率地图。文献[7]利用基于高 斯分布的概率图,提出了一种解决这种类型地图 的单机器人 CPP 问题的算法。但真实世界灾害危 险的范围并不刻意遵循相同的分布,需要根据各 种真实环境的先验信息构建地图。

在考虑真实地图建模的情况下, 文献[8]提出 了一种加速搜救方法,利用先验信息对高概率地

区进行优先搜索,但利用单无人机进行区域搜索, 未考虑无人机的续航能力有限。文献[9]提出了一 种区域划分,并为每个区域分配一架无人机,以 确保各区域中无人机的工作负载一致,但未引入 先验信息来优化搜索。文献[10]提出了一种基于强 化学习的海上SAR自主覆盖路径规划模型,能够 规划出一条耗时最短且优先覆盖概率值高的区域 的搜索路径用于海上救援,但存在重复覆盖的问 题。文献[11]提出了一种基于概率地图进行优先搜 索的路径规划方法,并且要求无人机从基地出发 搜索最后返回基地。但这将导致在有限的续航时 间内无人机搜索到的单元更少,不适用于紧急救 援。文献[12]提出使用深度学习的方法将环境网格 图转化为热力图,然后在热力图的基础上对高热 值点进行优先搜索,但未考虑到当前节点与候选 节点之间的距离因素。文献[13]提出了一种基于信 息图的多无人机三维协同搜索的方法来对移动目 标进行搜索。文献[14]提出基于概率地图使用多无 人机协同搜索通信范围受限情况下的海上目标。

本文提出了一种多无人机协同区域优先覆盖搜 索算法,并将搜索问题分解为多无人机任务区域分 配和优先覆盖搜索两个子问题,对子问题分别优化 求解,并通过仿真验证了其有效性与合理性。

1 覆盖搜索任务模型

搜索区域经过栅格化、概率标记、区域划分 操作后,把搜索区域离散化并为每个单元标记上 代表其重要性的权值,再将其划分成大小相似且 数量与无人机个数相等的子区域。最后,通过起 点确定为每个子区域确定一个搜索起点,并定义 无人机的飞行模式。

1.1 区域栅格化

将实际的不规则搜索区域抽象为几何区域。 在待搜索区域的卫星地图上抽取一组离散的地理 边界点,由这些点来构成一个多边形的搜索区域。 并通过哈弗幸公式(1)和(2)将地理坐标转换为单位 向量为1m的笛卡尔坐标,以便于下一步区域的 离散化。

$$a = \sin^2(\Delta \varphi/2) + \cos \varphi_1 \cos \varphi_2 \sin^2(\Delta \lambda/2)$$
(1)

$$d = 2R \arctan(\sqrt{a}, \sqrt{(1-a)})$$
⁽²⁾

式中: φ为纬度; λ为经度; R为地球半径(平均半 径=6 371 km); d为2个地理点之间的距离。

将连续多边形区域转换为伪离散网格空间。 无人机搭载传感器在空中搜寻时,向下的视场等 效为一个正方形,如图1所示。因此,将多边形 几何区域离散成正方形单元格,并抽象出网格中 心点。假设当无人机到达单元格中心时,整个单 元格都被搜索到。

图 1 无人机视场图 Fig. 1 UAV field-of-view diagram

W为单元格的宽度,无人机移动一次所覆盖的面积为W²。

 $W = 2h \tan(\alpha/2)$ (3) 高度h与空间分辨率R之间的关系:

$$R = h S_{\text{pixel}} / f \tag{4}$$

式中: h为无人机离地高度; a为无人机机载摄像 机拍摄场景的角度范围; f为机载摄像头焦距; S_{nixel}为摄像机像素大小。

1.2 概率标记

待搜索区域的卫星地图网格化后,为每个网 格标记不同的权值来反映其重要性程度,以此来 生成一张概率地图。每个单元都是基于灾难发生 的概率,比如,当发生地震时在住房和树木下出 现被困人员的概率更大。概率地图简单、直观地 反映了各地区受灾程度,是后续指导无人机优先 搜索的关键。

假设搜索区域中不存在禁飞域,且机载摄像 头在规定的高度中能够清晰识别受害者。根据灾 难发生的情况,将网格划分为5个等级,不同等 级的网格添加不同的权重和颜色加以区分,如图2 所示。对于大面积的搜索区域通常包含数万个要 分类的像元,考虑到手动标注的难度,这里只对 总栅格地图单元的20%手动添加场景标签。然后, 通过密集卷积网络^[15](DenseNet121)进行特征提取, 再使用支持向量机^[16]进行分类。分类后,类别标 签被转换为权值,网格图被转换为概率图。

Fig. 2 Probabilistic markers

1.3 区域划分

已知无人机数量*N*,使用K-means++算法将栅 格化的搜索区域划分为*N*个大小相似的子区域, 并为每个子区域分配一架无人机进行搜索。这样 能够平衡每架无人机的工作负载,避免无人机之 间的碰撞,提高搜索效率。

K-means 算法在聚类过程中, *K*值和初始聚类中心都需要人为设定,不同的初始聚类中心会产生完全不同的结果,从而导致收敛速度慢且容易陷入局部最优。K-means++算法¹⁰⁷依次选择距离最大的点作为初始中心点,避免初始中心点落入高密度数据区域,使不同位置的单元得到有效分区。根据本文场景需求,使用K-means++算法对初始化中心进行优化,并将*K*值设置为无人机数量*N*。

第36卷第4期	系统仿真学报	Vol. 36 No. 4
2024年4月	Journal of System Simulation	Apr. 2024

采用 K-means++ 算法创建 N 个聚类,其中, 网格中心点的 x 和 y 坐标用作唯一的特征,聚类的 数量为 N,收敛容差为 W/8,最大迭代次数为10。 待搜索点集为各单元格的网格中心点,共有 M 个。 算法具体流程如下。

step 1: 从待搜索点集 $X = \{x_1, x_2, \dots, x_M\}$ 中随机 选择一个网格中心点作为第一个聚类中心 a_1 ;

step 2: 计算X中每个点 A_i 到已选择的聚类中心 的距离 $d(x_i) = \sqrt{(x_i - a_i)^2}$,并以概率 $d(x_i) / \sum d(x_i)$ 从X中选择 $d(x_i)$ 值最大网格中心点作为下一个聚 类中心 a_i ;

step 3: 重复 step 2, 直至选出 N个初始聚类
中心;

step 4: 对于剩余点集,则根据距离中心点的 最近原则,将*X*中的点*x*_i分配到对应的类中;

step 5: 将各区几何中心作为其新的聚类中心;

step 6: 重复 step 4~5 直到算法收敛、聚类中 心稳定,并记录各个区域最终的聚类中心分别为 $\{a_1, a_2, ..., a_N\}_{\circ}$ 。

1.4 起点确定

所有无人机从基地出发飞到各自区域的搜索 起点,再开始区域搜索。因此,需在子区域中选 择一个最佳单元作为该区的搜索起点,以提高后 期搜索效率。

首先选择子区域中权值最大的单元;若存在 多个权值最大的单元,则选择其8邻域权值均值*A* 最大的单元,如式(5)所示;若*A*值也存在多个最 大的,则选择离该区域聚类中心最近的单元。由 算法1确定各子区域的搜索起点*I_k*。假设无人机基 地坐标点为*B*,无人机从基地到各分区起点的初 始飞行距离为*d_k*由式(6)可得,其中,*k*=1,2,…,*N*。

$$A(i,j) = \sum_{n=i-1}^{i+1} \sum_{m=j-1}^{j+1} \frac{P(m,n)}{8}$$
(5)

$$d_k = \sqrt{\left(I_k - B\right)^2} \tag{6}$$

式中: P(m,n)为当前单元(i, j)周围的权值, $n \neq i, m \neq j$ 。

算法1 起点确定 输入:第k个子区域的概率地图 输出:第k子区域的搜索起点 I_k , k=1,2,...,N初始化: $P_{max}=0$ for 搜索单元G do if G的权值> P_{max} then $I_k=G$ $P_{max}=G$ 的权值 if G的权值== P_{max} then 选择A值最大的单元作为 I_k if 存在多个A值最大的单元 then 选择离聚类中心 a_k 最近的单元作为 I_k end if end for

1.5 飞行模式

为快速且有效地找到受害人员和获取灾区信息,本文设计2种飞行模式,第1种是搜索模式,即无人机悬停在单元格上方用于拍照和搜索受害者,设悬停时间为t_s。第2种是移动模式,无人机快速地从当前单元格移动到下一个单元,设移动速度恒定为v_m,路径列表中相邻单元的移动时间为

$$t_{\rm m}(i) = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2} / v_{\rm m}$$
(7)

假设N个子区域中各路径列表的单元总数依次为M₁,M₂,…,M_N,且子区域中的起点不搜索。 第*k*个子区域的总搜索时间和总路径长度分别为

$$t_{k} = \sum_{n=1}^{M_{k}-1} \left[t_{m}(n) + t_{s} \right]$$
(8)

$$L_{k} = \sum_{n=1}^{M_{k}-1} \sqrt{(x_{i} - x_{i-1})^{2} + (y_{i} - y_{i-1})^{2}}$$
(9)

由于无人机同时从基地出发,直到子区域的 所有单元搜索完才停止,所以用时最长的无人机

余翔,等:一种多无人机协同优先覆盖搜索算法

所花费的时间就是任务的执行时间:

 $t_{total} = \max[t_k + d_k/v_B]$ (10) 式中: (x_i, y_i) 和 (x_{i-1}, y_{i-1}) 分别为第i和i-1个单 元的中心坐标; v_B 为无人机从基地分区起点的飞 行速度; $k=1, 2, \dots, N_o$

2 搜索算法设计

以网格分数作为决定路径列表中网格搜索顺序 的基准,改进贪心算法和融合A*算法进行路径优 化,从区域搜索起点开始搜索并依次添加到路径 列表中,直至搜索完所有的单元。将路径列表中 网格中心点坐标还原成实际的地理坐标,供无人 机在任务区域内飞行。假设区域搜索等效为对该 区域当中网格中心点的遍历,且搜索区域中无禁 飞区。

2.1 网格分数

为每个网格估计一个分数值,并将分数值最高的网格作为下一个路径点添加到路径列表中。 由于权值越大、距离越近的网格应更早地被访问, 所以网格分数与权值呈正相关、与距离呈负相关, 网格分数S被定义为未搜索网格的权值比未搜索 网格与无人机当前位置之间的距离:

$$S(i,j) = \frac{P(i,j) \cdot \text{Covered}(i,j)}{\sqrt{(i-x)^2 + (j-y)^2}}$$
(11)

式中: (*x*,*y*)、(*i*,*j*)为当前和候选单元的中心坐标; *P*(*i*,*j*)为候选单元的权值; Covered(*i*,*j*)为由0和1 组成的矩阵来记录该单元是否被搜索过,0表示已 搜索、1表示未搜索。

若按照式(11)定义的网格分数进行路径规划, 高权值网格总是具有较高的分数值,从而导致搜 索时主要依据网格的权值大小。距离因素考虑不 足将会造成轨迹可能会从一个航路点跳到另一个 航路点而造成轨迹颠簸。首先最小化距离,再考 虑网格的权值。因此,将式(11)优化为式(12),以 便于在这些因素之间具有更平衡的关系。搜索路 径中的第一个网格是无人机的初始位置,在此步 骤中将不会搜索第一个网格。

$$S(i,j) = \frac{P(i,j) \cdot \text{Covered}(i,j)}{\exp\left[\sqrt{(i-x)^2 + (j-y)^2}\right]}$$
(12)

2.2 改进贪心算法

由于在搜索路径规划时考虑的因素多,直接 求解全局最优解,不仅求解复杂,而且计算量大。 因此,本文引入贪心算法^[18]将整个问题分解为若 干个子问题,每个子问题的最优解叠加起来作为 全局最优解,即每次搜索都用式(12)计算未搜索网 格的分数值并选取其中分数值最大的网格作为下 一次搜索的起点,直至搜索完所有网格生成最终 路径。

当前单元与网格分数最大的候选单元位于同 一条水平或垂直的直线上,并且在该直线上这两 单元之间存在未搜索单元,将这类情况称为直线 跳跃搜索。当出现直线跳跃搜索时,若只是单一 考虑网格分数,跳过中间单元先搜索网格分数大 的单元,再原路返回搜索中间的单元,这样将产 生较多的重复路径,从而降低搜索效率。

本文在贪心算法的基础上做出如下改进:若 当前单元与网格分数最大的候选单元位于同一条 垂直或水平线上,那么这2个单元之间的所有未 搜索单元就自动成为路径点,避免无人机返回探 索而产生较多的重复路径,如图3所示。

图 3 直线跳跃搜索 Fig. 3 Straight-line jump search solution

第36卷第4期	系统仿真学报	Vol. 36 No. 4
2024年4月	Journal of System Simulation	Apr. 2024

图3中,在同一直线上存在4个单元,用红色 圆圈标记出当前单元,A、B、C为候选单元。假 设3个候选单元的网格分数从大到小依次为C>A> B。若按照搜索网格分数最大为基准,则搜索顺序 为C、A、B。本文改进后,将当前单元与C单元 之间的A、B自动视为路径点依次搜索,搜索顺序 为A、B、C。

2.3 引入A*算法

在搜索过程中,当前单元周围容易出现多个 网格分数相等的候选单元,难以判断应选择哪一 个单元,这类情况称为网格分数冗余。为了能够 更早更多地搜索到权值大的单元,当出现网格分 数冗余时,先计算冗余单元的8邻域权值密度 *h(i,j)*如式(13)所示,再选择密度值最大的作为真 正的候选单元,如图4所示。

$$h(i,j) = \sum_{n=i-1}^{i+1} \sum_{m=j-1}^{j+1} \frac{P(m,n)}{\sqrt{(i-m)^2 + (j-n)^2}}$$
(13)

式中: P(m,n)为冗余单元周围8邻域单元的权值, $n \neq i, m \neq j_o$

Fig. 4 Grid score redundancy solution

在图4中,当前单元周围出现A、B、C这3个 网格分数相等的冗余单元时,用3种不同颜色的虚 线画出其周围8邻域单元,并计算各冗余单元的 *h*(*i*,*j*)值。由计算可知C单元的*h*(*i*,*j*)值最大,则C单 元被指定为下一个路径点。这里单元格的不同颜色 代表不同的权值大小,颜色越深对应的权值越大。

这里引入A*算法的思想来解决网格分数冗余问题。A*算法^[19]是一种经典的启发式搜索算法,通过代价函数对其可达邻域中每一个节点进行评

估,得到最好的节点,并将其作为下一次搜索的 起点。在这种启发式搜索的过程中,对节点的代 价估计尤其重要,采用不同的代价函数会有不同 的效果。本文提出的改进A*算法用网格分数相同 的冗余单元作为备选路径点,并把冗余单元的8 邻域权值密度*h*(*i*,*j*)设置为启发函数,代价函数为 *f*(*i*,*j*)=*g*(*i*,*j*)+*h*(*i*,*j*) (14)

式中: g(i,j)=Score(i,j)为候选单元的网格分数。

在此场景中,需要选择*f*(*i*,*j*)值最大的冗余单 元加入路径列表中作为下一个搜索起点。与传统 A*算法找代价函数值最小单元的做法不同,但寻 找最有位置的本质相同。因此,将代价函数*f*(*i*,*j*) 更名为奖励函数,以奖励函数值最大为方向进行 搜索,使权值大的单元更早地被搜索。

融合改进后的贪心算法和A*算法构成本文的离 散路径规划算法,如算法2所示,由该算法生成各子 区域的路径列表 $l_k=\{G_i\}$, $0 \leq i \leq M_k$, $k=1,2,\cdots,N$ 。

利用多个矩阵变换将路径列表中的点转换为 地理坐标:

 Pg=PcC⁻¹G
 (15)

 式中: Pg为要转换到地理平面的点; Pc为要从地

 理平面转换的点; C为笛卡尔变换矩阵; G为一个

 包含地理坐标中边界信息的向量。

算法2 离散路径规划

输入:第 k 个子区域的概率地图,分区搜索 起点 I_k

输出: 第k个子区域的搜索路径列表 $l_k = \{G_i\}, 0 \le i \le M_k$

$$G = I_k$$

将该区域中除起点外的待搜索单元添加

到 l_{open}

特
$$I_k$$
称加到 l_{close}
while l_{open} do
 $S_{max} = 0$
 $G_{max} = null$
for l_{open} do
根据式(12)计算每个网格的网

http://www.china-simulation.com

格分数

第36卷第4期 2024年4月

if 单元的分数> then G_{max} =该单元, S_{max} =该单元分数 if 单元的分数== S_{max} then 选择 h(i,j)值最大的单元赋给 G_{max} ,

S_{max}=该单元分数

end if

end for

if G_{max}和G_{current}位于同一直线 then

将 G_{max} 、 $G_{current}$ 之间的点依次从中移除并添加到 l_{close}

end if

将 G_{\max} 从 l_{open} 中移除并添加到 l_{close} end while

3 仿真

本节从多无人机和单无人机两个方面对所提 算法的性能进行评估,并与文献[8,10,12]中的 搜索算法进行对比。评估的指标有搜索路径长度 *L*、搜索时间*t*、相同时间内的权值比σ。本文所有 实验均在 Intel Core i7-8700,6核,3.2G 主频的计 算机中基于 python进行仿真验证。

3.1 多无人机协同搜索仿真

本文使用多架无人机在面积大小不同的搜索 区域中仿真验证所提算法的合理性及有效性,并 与相关搜索算法进行对比。从路径长度L、搜索 时间t和相同时间内的权值比σ三个方面评估算法 性能的优劣。在多无人机的仿真当中,路径长度 L是指各子区域搜索路径长度的总和;搜索时间t 是指各子区域搜索时间当中的最大值;相同时间 内的权值比σ是指不同算法从0到设定的相同时间 内已搜索单元的权值总和比整个区域的权值总和。

本文设置了5个搜索区域:区域I面积为 0.2931km²,无人机数量为10,权值比时间为 150s;区域II面积为0.542km²,无人机数量为15, 权值比时间为185s;区域III面积为0.874km², 无人机数量为20,权值比时间为225s;区域IV 面积为1.3 km²,无人机数量为25,权值比时间为 268 s;区域V面积为1.831 4 km²,无人机数量为 30,权值比时间为315 s。多无人机仿真的相关参 数设置如表1所示。

Table 1 Simulati	on parameter setting
参数	数值
单元间移动速度 <i>v_m/(m/s)</i>	10
悬停时间 t _s /s	3
无人机离地高度 <i>h</i> /m	60
机载摄像机角度α/(°)	18
机载摄像机焦距f/mm	35
机载摄像头像素S _{pixel}	640×512

为了更加科学、合理地将所提算法与其他算 法进行对比分析,验证其优劣性。通过1.4节的起 点确定算法设定无人机的搜索起点,各算法使用 相同的搜索起点以排除各算法之间由起始位置不 同而造成的误差。本文设定所有的无人机统一从 无人机基地出发,先飞到各子区域的搜索起点, 再开始并行搜索各自的子区域。由于不同算法之 间基地、搜索起点、无人机速度均一致,各算法 间无人机从基地到各区域搜索起点的距离和时间 均相同,因此,重点比较各区域内的路径规划。 各算法在路径长度L方面的仿真如图5所示。多无 人机在搜索时间t和相同时间内的权值比σ两个方 面的仿真数据结果如表2所示。

Journal of System Simulation, Vol. 36 [2024], Iss. 4, Art. 17

第 36 卷第 4 期 2024 年 4 月	系统仿真学报 Journal of System Simulation						X	Vol. 36 No. 4 Apr. 2024		
表 2 多无人机仿真结果 Table 2 Multi-UAV simulation results										
算法	区域I		区域Ⅱ		区域III		区域IV		区域V	
	t/s	σ	t/s	σ	t/s	σ	t/s	σ	t/s	σ
本文	250.507	0.749	309.703	0.765	375.329	0.744	447.392	0.758	525.389	0.781
文献[12]	252.710	0.733	312.263	0.757	378.520	0.748	450.259	0.761	530.122	0.782
文献[10]	252.914	0.742	313.847	0.754	379.856	0.738	451.168	0.741	531.941	0.776
文献[8]	254.745	0.750	315.286	0.755	381.955	0.743	454.335	0.746	535.854	0.763

由图5可知,本文算法能够明显地缩短路径 长度L。表2表明本文算法相较于其他算法在权值 比σ基本一致的情况下,有效地减少了搜索时间t。 仿真验证了其有效性、通用性及优越性。

3.2 单无人机搜索仿真

为进一步评估算法的合理性以及验证1.4节起 点确定算法的有效性,本文使用单个无人机在不 同大小的环境中进行仿真。本文设置了10×10、 15×15、20×20、25×25、30×30不同大小的正方形 栅格地图作为仿真环境。为栅格地图中的单元格 随机设置不同的权值,以模拟真实灾区中各地区 之间的重要性差异。将栅格单元的重要性分为 5个等级,分别用1、0.8、0.6、0.4、0.2权值来进 行标记,即权值越大人员被困的概率越大。设置 正方形栅格地图中栅格的边长*W*为1 m,无人机 在栅格之间的移动速度*v_m*为5 m/s,悬停搜索时间 *t_s*为2 s。此处不考虑无人机的飞行高度和搭载摄 像机的分辨率,将无人机视为二维平面上的一个 质点。假设无人机对网格中心的遍历相当于对单 元格的搜索。

先由起点确定算法确定每个地图的搜索起点, 再从该起点作为初始位置开始仿真,并记录路径长 度L、搜索时间t和权值比 σ ,将这组数据用 η 来进 行标记。同时,计算地图中各组数据的平均值,用 φ 标记该组数据。将2组数据作对比,如表3所示。 其中,10×10、15×15、20×20、25×25、30×30地 图中 σ 的时间分别设置为130、300、540、840、 1220 s。本节使用所提算法在不同的地图中对起 点确定算法进行验证。

	表 3 起点对比结果	
Table 3	Starting point comparison resu	ılts

山团	路径长	:度/m	搜索印	权值比		
변업	η	φ	η	φ	η	φ
10×10	119.320	125.898	221.864	223.179	0.698	0.702
15×15	286.414	194.618	505.212	507.159	0.714	0.717
20×20	513.828	523.281	900.765	902.656	0.696	0.690
25×25	811.211	829.260	1 410.242	1 413.852	0.710	0.704
30×30	1 188.839	1 219.651	2 035.768	2 041.162	0.732	0.731

由表3可知,将起点确定算法得出的点作为 搜索起点进行仿真得出的相关数据比该区域相关 数据的平均值都要好。特别是在路径长度和搜索 时间方面更有优势,起点确定算法能够在一定程 度上缩短路径长度和搜索时间。

为了更加直观、清晰地了解搜索路径生成的 具体过程,将各算法的线路图进行对比。所有算 法在10×10的栅格地图上进行仿真,并随机为每 个单元附上权值。统一将(8,7)坐标点设置为搜索 的起点,抽象出栅格单元的中心点作为路径规划 的航点,各算法的线路图如图6所示。本文算法 从(8,7)坐标点开始按照算法设定的规则依次搜索 网格中心点,直至搜索完所有中心点,最终在 (7,8)点处结束搜索。本文算法相比其他3个算 法,路径更加有序,且较少有重复路径和跨度较 大的相邻航点出现。可以看出在相同的环境中, 本文算法的路径长度L要明显比其他算法的短。 进一步验证了本文所提算法的合理性和有效性。

图 6 各算法仿真线路图 Fig. 6 Simulation line diagram of each algorithm

4 结论

本文提出了一种地图模型和一种适合多无人 机的优先覆盖搜索算法,用于紧急救援时对灾区 中重要性较高的区域进行优先搜索。先由 K-means++算法进行搜索区域划分和无人机的任 务分配,再以网格分数为基准,并且改进、融合 贪心算法和A*算法,进行各子区域内的路径规 划,在保证优先搜索的同时有效降低了搜索路径 的长度。仿真表明:本文算法在权值比方面与其 他算法基本一致的情况下,在路径长度和搜索时 间方面明显占优。本文算法目前是基于离线的先 验已知环境,未来应该更多地结合机器人视觉对 未知环境的搜索方法进行研究。

参考文献:

- [1] 韩宇波. 无人机航摄系统及其在地质灾害应急救援中的应用[J]. 科技创新与应用, 2022, 12(29): 193-196.
- [2] Jiang Xiangyu, Pa Naiyuan, Wang Wenchang, et al. Site Selection and Layout of Earthquake Rescue Center Based on K-means Clustering and Fruit Fly Optimization Algorithm[C]//2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Piscataway, NJ, USA: IEEE, 2020: 1381-1389.
- [3] David Eidenbenz, Frank Techel, Alexandre Kottmann, et al. Survival Probability in Avalanche Victims with Long Burial (≥60 min): A Retrospective Study[J]. Resuscitation, 2021, 166: 93-100.
- [4] Yu Xiaobing, Li Chenliang, Zhou Jiafang. A Constrained Differential Evolution Algorithm to Solve UAV Path Planning in Disaster Scenarios[J]. Knowledge-Based Systems, 2020, 204: 106209.
- [5] 黄杰,傅文,罗淳,等.一种基于隔行扫描的凸多边形区

第36卷第4期	系统仿真学报	Vol. 36 No. 4
2024年4月	Journal of System Simulation	Apr. 2024

域固定翼无人机摄影测量覆盖路径规划方法[J]. 航空 航天, 2022, 9(9): 521.

Huang Jie, Fu Wen, Luo Chun, et al. An Interlaced Scanning-based Fixed-wing UAV Photogrammetric Coverage Path Planning Method for Convex Polygonal Regions[J]. Aerospace, 2022, 9(9): 521.

- [6] Tauã M Cabreira, Carmelo Di Franco, Paulo R Ferreira, et al. Energy-aware Spiral Coverage Path Planning for UAV Photogrammetric Applications[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3662-3668.
- [7] Lin L, Goodrich M A. UAV Intelligent Path Planning for Wilderness Search and Rescue[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2009: 709-714.
- [8] Shih G R, Tsai P H, Lin C L. A Speed Up Approach for Search and Rescue[C]//2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ, USA: IEEE, 2018: 4178-4183.
- [9] Collins L, Ghassemi P, Esfahani E T, et al. Scalable Coverage Path Planning of Multi-robot Teams for Monitoring Non-convex Areas[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2021: 7393-7399.
- [10] Ai Bo, Jia Maoxin, Xu Hanwen, et al. Coverage Path Planning for Maritime Search and Rescue Using Reinforcement Learning[J]. Ocean Engineering, 2021, 241: 110098.
- [11] Snyder G A, Shriwastav S, Morrison D, et al. Path Planning for Optimal Coverage of Areas with Nonuniform Importance[C]//AIAA SCITECH 2022 Forum. Reston, VA, USA: AIAA, 2022: AIAA 2022-2546.
- [12] Song Hongyu, Yu Jincheng, Qiu Jiantao, et al. Multi-UAV Disaster Environment Coverage Planning with Limited-endurance[C]//2022 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2022: 10760-10766.
- [13] 王洪民, 庄育锋, 韦凌云, 等. 基于信息图的多无人机三 维协同搜索动目标方法[J]. 控制与决策, 2023, 38(12): 3534-3542.

Wang Hongmin, Zhuang Yufeng, Wei Lingyun, et al. Multi-UAV 3D Collaborative Searching for Moving Targets Based on Information Map[J]. Control and Decision, 2023, 38(12): 3534-3542.

[14] 王可铮,周兴莲,林梦婷,等.受限通信范围下海上目标 的多无人机协同搜索算法[J]. 传感器与微系统, 2022, 41(12): 143-146, 157.

Wang Kezheng, Zhou Xinglian, Lin Mengting, et al. Cooperative Search Algorithm of Multi-UAV for Sea Targets in Limited Communication Range[J]. Transducer and Microsystem Technologies, 2022, 41(12): 143-146, 157.

- [15] Huang Gao, Liu Zhuang, Laurens Van Der Maaten, et al. Densely Connected Convolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 2261-2269.
- [16] Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.

[17] 曾建邦,张月娅,张壮,等. 基于动态k值K-means++聚类的电动汽车动力电池电压不一致故障识别方法[J].中国科学(技术科学), 2023, 53(1): 28-40.
Zeng Jianbang, Zhang Yueya, Zhang Zhuang, et al. Identification of Power Battery Voltage Inconsistency Faults in Electric Vehicles Based on K-means++ Clustering with Dynamic k-values[J]. Scientia Sinica (Technologica), 2023, 53(1): 28-40.

[18] 雷雨龙,侯博宁,付尧,等.基于贪心策略的电动车AMT 换挡点实时优化方法研究[J].北京理工大学学报, 2022,42(8):784-790.

Lei Yulong, Hou Boning, Fu Yao, et al. Research on Realtime Optimization Method of AMT Shift Point of Electric Vehicle Based on Greedy Algorithm[J]. Transactions of Beijing Institute of Technology, 2022, 42 (8): 784-790.

[19] Xiong Xiaoyong, Min Haitao, Yu Yuanbin, et al. Application Improvement of A* Algorithm in Intelligent Vehicle Trajectory Planning[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 1-21.