Journal of System Simulation

Volume 36 | Issue 8

Article 14

8-15-2024

Study on Robust Chance Constrained Optimization of Multienergy Supply System Based on Wind and Solar Power Combined Output Simulation

Zhe Bao

College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

Wei Li

College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

Xiaofang Zhang College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

Zongyuan An College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

See next page for additional authors

Follow this and additional works at: https://dc-china-simulation.researchcommons.org/journal

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical Analysis and Scientific Computing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Systems Science Commons

This Paper is brought to you for free and open access by Journal of System Simulation. It has been accepted for inclusion in Journal of System Simulation by an authorized editor of Journal of System Simulation. For more information, please contact xtfzxb@126.com.

Study on Robust Chance Constrained Optimization of Multi-energy Supply System Based on Wind and Solar Power Combined Output Simulation

Abstract

Abstract: In order to effectively avoid potential imbalance between supply and demand caused by the uncertainty of wind and solar power outputs, and promote the sustained development of the multi-energy supply system, a robust chance-constrained optimization model is developed for identifying optimal operation strategies under complexities and uncertainties through incorporating Copula theory, chance-constrained programming, and robust programming within a general framework. The results show that this model can not only accurately characterize the distribution probability of combined outputs of wind and solar power and formulate the operational strategies under low default risk conditions, but also reduce the proportion of highrisk energy output by adjusting the energy output structure on the supply side, and generate a robust operation scheme for the multi-energy supply system, which significantly improves the stability of the system operation, and reduces the economic risks caused by the uncertainty of wind and light.

Keywords

multi-energy supply system, uncertainty, Copula theory, chance-constrained programming, robust optimization

Authors

Zhe Bao, Wei Li, Xiaofang Zhang, Zongyuan An, and Ye Xu

Recommended Citation

Bao Zhe, Li Wei, Zhang Xiaofang, et al. Study on Robust Chance Constrained Optimization of Multienergy Supply System Based on Wind and Solar Power Combined Output Simulation[J]. Journal of System Simulation, 2024, 36(8): 1895-1913.

第36卷第8期	系统仿真学报©	Vol. 36 No. 8
2024年8月	Journal of System Simulation	Aug. 2024

基于风、光联合出力仿真的多能联供系统鲁棒 机会约束优化研究

包哲,李薇,张潇方,安宗元,许野*

(华北电力大学 环境科学与工程学院, 北京 102206)

摘要:为了有效规避风、光出力不确定性造成的供需失衡风险、促进多能联供系统的持续、稳定 和健康发展,联合使用 Copula 理论、机会约束规划方法和鲁棒优化算法,构建了考虑风、光联合 出力不确定性的多能联供系统鲁棒机会约束优化调度模型。结果显示:该模型不仅可以准确识别 和表征风、光联合出力分布概率,制定低违约风险条件下的风、光出力策略,还可以通过调整供 给侧能源输出结构,生成鲁棒性最优的多能联供系统运行方案,显著提高系统运行的稳定性,降 低风、光不确定性造成的经济风险。

关键词:多能联供系统;不确定性; Copula理论; 机会约束; 鲁棒优化

中图分类号: TK01; TP391 文献标志码: A 文章编号: 1004-731X(2024)08-1895-19

DOI: 10.16182/j.issn1004731x.joss.23-0848

引用格式:包哲,李薇,张潇方,等.基于风、光联合出力仿真的多能联供系统鲁棒机会约束优化研究[J].系统仿真学报,2024,36(8):1895-1913.

Reference format: Bao Zhe, Li Wei, Zhang Xiaofang, et al. Study on Robust Chance Constrained Optimization of Multienergy Supply System Based on Wind and Solar Power Combined Output Simulation[J]. Journal of System Simulation, 2024, 36(8): 1895-1913.

Study on Robust Chance Constrained Optimization of Multi-energy Supply System Based on Wind and Solar Power Combined Output Simulation

Bao Zhe, Li Wei, Zhang Xiaofang, An Zongyuan, Xu Ye*

(College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: In order to effectively avoid potential imbalance between supply and demand caused by the uncertainty of wind and solar power outputs, and promote the sustained development of the multi-energy supply system, a robust chance-constrained optimization model is developed for identifying optimal operation strategies under complexities and uncertainties through incorporating Copula theory, chance-constrained programming, and robust programming within a general framework. The results show that this model can not only accurately characterize the distribution probability of combined outputs of wind and solar power and formulate the operational strategies under low default risk conditions, but also reduce the proportion of high-risk energy output by adjusting the energy output structure on the supply side, and generate a robust operation scheme for the multi-energy supply system, which significantly improves the stability of the system operation, and reduces the economic risks caused by the uncertainty of wind and light.

Keywords: multi-energy supply system; uncertainty; Copula theory; chance-constrained programming; robust optimization

基金项目: 国家自然科学基金(62203171); 中央高校基金(2021MS039)

第一作者:包哲(1988-),男,蒙古族,讲师,博士,研究方向为综合能源系统仿真建模与运行优化。

收稿日期: 2023-07-06 修回日期: 2023-08-31

通讯作者:许野(1980-),男,副教授,博士,研究方向为综合能源系统优化。

第36卷第8期 2024年8月

0 引言

随着化石燃料的逐渐枯竭和全球变暖问题的 日益凸显,构建绿色低碳的新型能源系统已成为 能源行业完成绿色转型和实现"双碳目标"的重 要举措^[1]。2021年3月,习近平在主持召开中央财 经委会员第九次会议中明确指出,我国未来要实 施可再生能源替代行动,深化电力体制改革,构 建以新能源为主体的新型电力系统。在此背景下, 耦合储能、风能和太阳能的冷热电联供系统(以下 简称多能联供系统),因能够实现能源的梯级利用 和多能互补协同运行,有效减少化石能源使用量 和二氧化碳排放量,已成为研究热点^[2]。然而,随 着未来风、光能源的大规模接入,其出力的不确 定性和波动性,将给多能联供系统的安全运行带 来新一轮的挑战。

现有研究通常采用不确定优化算法和多场景 仿真方法处理风、光能源出力随机性带来的供能 安全隐患。文献[3]基于机会约束规划方法,建立 了风、光分布式电源多目标规划模型,通过设置 不同的置信度,表述风、光不确定性对系统运行 方案安全性的影响。文献[4]考虑到综合能源系统 源荷侧存在的随机不确定性,建立了综合能源系 统随机规划模型,结果表明该模型有效提升了系 统的供能可靠性。文献[5]综合考虑了风、光出力 的不确定性,基于随机规划方法建立了耦合风能、 太阳能、储能的综合能源容量配置优化模型,获 得了风、光、储的最佳装机容量。文献[6]基于两 阶段随机规划方法, 解决了多能元系统优化模型 中需求侧随机性对模拟结果准确性的影响。文献 [7]针对耦合风、光能源的电热氢能源系统,建立 了鲁棒优化模型,结果表明该方法可提升系统的 经济效益,并降低风、光能源随机性带来的经济 风险。文献[8]在充分考虑光伏电站出力随机性的 前提下,提出了一种针对光储分布能源系统的鲁 棒优化配置模型,获得了系统最优配置方案。文 献[9]基于鲁棒优化算法,建立了电力系统运行优 化模型,有效解决了风、电随机性对系统运行调 度安全性的影响。文献[10]基于条件风险价值算 法, 进行了风、光水网联合不确定性运行仿真, 获得了最优的调度策略。文献[11]考虑了光伏确定 性对系统运行成本的影响,应用盒式不确定集对 光伏出力进行了处理,实现了工业园区光-储配置 优化仿真。文献[12]应用多场景分析法和梯形模糊 数建立了光伏-光热-风电联合发电不确定性仿真 模型,实现了系统运行成本最小化。文献[13-14] 分别应用 Kendall 相关系数和 Pearson 相关系数生 成了风、光联合出力的典型场景,完成了风、光 出力相关性研究,但并未量化处理风、光联合出 力的不确定性。文献[15]基于分位点回归理论和降 维聚类技术,生成了风、光出力的典型场景,由 此构建了确定性的风光联合调度优化模型,生成 了高比例可再生能源电网的最优运行策略。文献 [16-17]分别使用改进K-means聚类方法和深度嵌 入聚类算法,构建了风、光出力典型场景,实现 了风、光出力不确定性向确定性的转化。

上述研究现状表明,目前关于处理风、光不 确定性的方法主要集中在应用随机规划算法、鲁 棒优化算法和多场景识别方法对能源系统的运行 进行不确定性仿真。其中,随机优化算法本质上 是基于风力发电和光伏发电各自的概率分布曲线, 通过建立机会约束规划 (chance-constrained programming, CCP)模型或条件风险模型,将风、 光出力的不确定性转化为确定性优化,以此规避 风、光不确定性对系统运行安全性的影响。然而, 对于园区级多能联供系统,所有的供能单元均处 在同一时间和空间序列下,导致风、光能源并非 是两个完全割裂的供能主体,而是有着强烈的出 力相关性[18-20]。因此,若仅根据风、光各自的概率 分布集合,制定各自运行方案,忽略彼此出力间 的"客观"影响规律,容易造成供需失衡的风险, 导致优化结果鲁棒性略显不足。鲁棒优化算法的 核心逻辑是假设风、光出力等随机性参数属于一 个不确定集合, 通过选择集合中最坏情况下的运

http://www.china-simulation.com

• 1896 •

第36卷第8期 2024年8月 包哲,等:基于风、光联合出力仿真的多能联供系统鲁棒机会约束优化研究

Vol. 36 No. 8 Aug. 2024

行方案,保证系统的稳定运行^[21]。但上述研究中, 通常是基于历史数据,建立风、光各自出力不确 定集合,未考虑风、光出力之间的联合分布信息, 无法对晴天"风小光照足"、阴天"风大光照弱" 等气象典型场景进行有效表征,导致优化结果科 学性略显不足。多场景识别方法主要依靠聚类算 法,而聚类算法在面对大规模的风、光负荷数据 集时,多数采取先降维再聚类的方式,但该方式 只能对原始数据执行线性嵌入学习,容易丢失原 始数据集的重要特征,造成聚类结果的不准确, 导致结果鲁棒性不足^[22]。

综上所述,为确保多能联供系统的安全稳定 运行,需要在充分考虑风、光出力的相关性的基 础上,有效规避风、光不确定性的影响,同时还 要保证运行策略的鲁棒性。因此,为解决上述问 题,本文以同时表征风、光相关性、处理风、光 不确定性,增加系统鲁棒性为出发点,应用 Copula函数对风、光相关性进行表征,应用CCP 算法规避风、光不确定性的影响,应用鲁棒算法 提升系统运行的安全性,以多能联供系统运行仿 真模型的约束条件为关联载体,通过实现Copula 函数、CCP算法和鲁棒算法的有机融合,最终提 出一种计及风、光联合出力分布概率的多能联供 系统鲁棒机会约束优化模型。

1 方法与模型

1.1 研究思路

本文研究路线如图1所示,首先,在充分掌 握 Copula 函数运算机理的基础上,全面分析风、 光电站历史运行数据, 生成风、光发电各自的分 布概率函数,计算不同风、光联合分布 Copula 函 数中的未知参数值,求出原始数据与每种 Copula 函数的秩相关系数,通过秩相关系数的对比分析, 遴选出最适合描述本研究风、光联合概率分布的 Copula 函数。其次,将上述 Copula 函数与 CCP 算 法相耦合,将Copula函数作为CCP 算法中随机变 量的概率分布函数,通过设置不同的置信度,建 立风、光联合出力约束条件。然后,基于上述风、 光联合出力约束,以多能联供系统运行成本最小 化为目标函数,以多能源供需平衡为约束条件, 结合设备出力仿真模型,建立多能联供系统机会 约束优化模型,同时利用对偶理论和拉格朗日条 件,将上述模型与鲁棒优化算法相耦合,最终建 立计及风、光联合出力分布概率的多能联供系统 鲁棒机会约束优化模型。最后,通过对模型的求 解,获得多能联供系统经济性、鲁棒性最优运行 方案。

图1 研究路线图 Fig.1 Research roadmap

http://www.china-simulation.com

• 1897 •

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024 年 8 月	Journal of System Simulation	Aug. 2024

1.2 风、光联合出力分布概率计算方法

在同一区域范围内,风、光能源出力即有各 自的随机波动性,彼此间又有强烈的相关性,深 入挖掘风、光联合出力的相关特性、有效表征二 者的共同变化趋势,是实现多能连供系统安全运 行的关键要素。本文选择应用 Copula 函数对风、 光联合出力进行计算。

1.2.1 Copula 理论

Copula函数是一种将联合分布函数和边缘分 布函数相连接的纽带函数^[23],主要分为两类,第 一类是椭圆分布族,包括Normal-Copula函数和 t-Copula函数,第二类是阿基米德函数族,包括 Frank-Copula、Gumbel-Copula和Clayton-Copula。 其中,后者主要处理呈非对称分布的随机变量, 考虑到风、光出力一般为非正态分布的连续型随 机变量,因此,本研究主要应用阿基米德Copula 函数表达风、光联合出力分布,具体表达式 如下:

$$F(u,v) = -\frac{1}{\lambda} \ln\left(1 + \frac{(e^{-\lambda u} - 1)(e^{-\lambda v} - 1)}{e^{-\lambda} - 1}\right)$$
(1)

$$G(u,v) = \exp\left(-\left[(-\ln u)^{\theta} + (-\ln v)^{\theta}\right]^{\frac{1}{\theta}}\right)$$
(2)

$$C(u, v) = \max\left([u^{-\gamma} + u^{-\gamma} - 1]^{\frac{1}{\gamma}}, 0 \right)$$
(3)

式中: F(u,v)、 G(u,v) 和 C(u,v)分别为 Frank-Copula、Gumbel-Copula 和 Clayton-Copula 的函数 表达式, u nv分别为联合分布函数中的两个随机 变量的边缘分布函数; λ 、 $\theta n \xi$ 分别为3个Copula 函数中2个随机变量间的相关系数。

1.2.2 Copula 函数应用流程

Copula函数的应用流程:基于风、光出力历 史数据,拟合两者各自的边缘函数;通过计算3 种Copula函数中风、光出力之间的相关系数,获 得3种Copula函数的Kendall检验和Spearman检验 系数;通过与原始数据进行对比,确定最佳 Copula函数表达式。 (1)风、光出力边缘函数计算方法

本研究选择应用非参数法中的核密度估计法拟合

风、光边缘函数。核密度估计是假设 $X_1, X_2, ..., X_N$ 均来自所研究的样本数据,在任意一点x的总体密度函数f(x)的分布函数为

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right) \tag{4}$$

式中: *K*为核函数; *n*为样本数量; *h*为分布宽度。 (2) Copula 函数检验方法

本研究选用Kendall 秩相关系数和Spearman 秩相关系数验证3种Copula 函数的拟合精度,具体计算过程如下:

$$\tau(u, v) = 4 \int_0^1 \int_0^{-1} C(u, v) \, \mathrm{d}C(u, v) - 1 \tag{5}$$

$$\rho(u, v) = 12 \int_{0}^{1} \int_{0}^{-1} C(u, v) du dv - 3$$
(6)

式中: $\tau(u,v)$ 和 $\rho(u,v)$ 分别为 Kendall 系数和 Spearman 系数。

1.3 风、光不确定性计算方法

1.3.1 机会约束规划

CCP是一种处理研究目标中存在随机性问题 的优化方法,用于在不确定性条件下帮助决策者 获得最大化目标函数。具体计算过程如下:

$\min f =$	C(t)X	(7))

 $\Pr[\{t|A_{i}(t)R \leq B_{i}(t)\}] \geq 1 - p_{i}, A_{i} \in A,$ (8)

 $B_i(t)^{p_i} = F^{-1}(p_i), \ i = 1, 2, \dots, m$ (9)

$$R \ge 0 \tag{10}$$

$$p_i \in [0, 1] \tag{11}$$

式中: f为目标函数; R为决策变量; $A \cap C$ 为决 策变量参数; B_i 为随机变量, B_i 的累积分布函数 为 $F(b_i)$; p_i 为随机变量的概率水平; Pr为约束 $A_i(t)R \leq B_i(t)$ 的概率水平。

CCP 算法通过将决策问题转化为一个概率约 束问题来处理不确定性,因此,如何选择分布概 率集将直接影响计算结果的合理性。本研究中, 为了充分考虑风、光联合出力对系统运行安全性 和经济性的影响,对式(8)进行进一步改进,将

第36卷第8期 2024年8月

包哲, 等: 基于风、光联合出力仿真的多能联供系统鲁棒机会约束优化研究

Copula 拟合的风、光联合出力函数作为CCP约束中的概率约束集:

 $B_i(t)^{p_i} = C^{-1}(p_i), i = 1, 2, ..., m$ (12) 式中: $C^{-1}(p_i)$ 为描述风、光出力联合分布 Copula 函数的反函数; p_i 为风、光联合出力的违约水平, p_i 值越高,代表选择的风、光联合出力量违约风险 越高。在具体研究中,一方面,为了保证系统运行 的稳定性,避免供需失衡的风险,另一方面,为给 决策者在"低风险"和"高回报"中提供更多的参 考样本,因此, p_i 值需要设定一个相对较宽的取值 范围,且范围的上限和下限不宜设置过高,本研究 中 $p_i \in [0.01, 0.1]^{[24]}$ 。为了在上述违约水平区间中 寻找系统鲁棒性最优解,本文将鲁棒优化算法与 CCP规划和Copula函数相耦合。

1.3.2 鲁棒优化

鲁棒优化是最优化理论中用来寻求在不确定 环境下使优化结果具有一定鲁棒性的方法。原始 鲁棒算法如下所示:

$$\min f = cx \tag{13}$$

$$\sum_{j \in J} a_j x_j \leq b_j, \forall b_j \in \left[\underline{b_j}, \overline{b_j}\right], x \ge 0$$
(14)

式中: *b*为不确定性参数,本文采用椭球不确定集 *U*描述不确定参数*b*。

$$U = \left\{ \boldsymbol{\xi} : \|\boldsymbol{\xi}\|_2 \leqslant \Omega \right\} \tag{15}$$

式中: *ξ*为不确定参数 *b* 的向量; *Ω*为不确定度, 用以刻画不确定参数的扰动范围。虽然椭球不确定 集能更准确地对不确定参数进行描述,但是在优化 问题中使用椭球不确定集属于 NP-hard 问题,面对 二次优化问题、锥二次优化和半定规划问题时难以 直接求解。因此,本文引入拉格朗日对偶理论解决 上述问题。由于,鲁棒优化本质是在考虑最差情况 下获得系统运行最优解的算法,加入拉格朗日对偶 理论后,原始优化鲁棒规划等价转换为

$$\max g(\lambda) = \inf (x, \lambda) \tag{16}$$

$$L = f(x) + \sum_{j \in J} \lambda_j (a_j x_j - b_j)$$
(17)

$$\sum_{j \in J} a_j x_j \leq b_j , \ \forall b_j \in \left[\underline{b_j}, \overline{b_j}\right]$$
(18)

式中:*L*为原始鲁棒规划的拉格朗日函数; λ为拉格朗日算子; g(λ)为关于拉格朗日算子对偶表达式。通过引入Slater条件,新加入三组约束条件:

$$\frac{\partial L(x,\lambda)}{\partial x} = 0 \tag{19}$$

$$\lambda_j (a_j x_j - b_j) = 0 \tag{20}$$

$$\lambda_i \ge 0 \tag{21}$$

本文为有效增加多能联供系统的鲁棒性,规 避风、光出力不确定性对优化结果安全性和经济 性的影响,将前述Copula函数、CCP算法与鲁棒 优化相耦合,改进后,式(18)和式(19)转化为

$$L = f(x) + \sum_{j \in J} \lambda_j (a_j x_j - C^{-1}(p_j))$$
(22)

$$\Pr[\{a_i X \le C^{-1}(p_i)\}] \ge 1 - p_i, \forall p_j \in [0.01, 0.1]$$

(23)

1.4 多能联供系统优化模型

本文中多能联供系统的具体运行流程如图2 所示,包括CCHP系统、电锅炉、电制冷、风电、 光伏发电和电化学储能。其中,CCHP系统、风 电、光伏发电主要满足用户的冷、热、电需求, 当电量供给量不足时,系统将从主电网购电以满 足电能需求,当冷、热供给量不足时,电制冷和 电锅炉作为后备能源,补充能源缺口。电化学储 能主要配合风、光能源使用,以此避免弃风弃光 现象出现。

1.4.1 目标函数

本文以多能联供系统运行成本最小化为目标 函数,包括系统的燃料购置成本和设备的维护 成本。

$$\operatorname{Min}\operatorname{Cost} f(x) = f_1 + f_2 \tag{24}$$

$$f_1 = C_{\rm ng} \sum_{t=1}^{I} N_{\rm gt}(t) + C_{\rm e} \sum_{t=1}^{I} E_{\rm ms}(t)$$
(25)

$$f_2 = \sum_{i=1}^{I} C_{\rm mt} H_i \ (t) \tag{26}$$

式中: f1为系统的燃料购置成本,元; f2为系统中

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024 年 8 月	Journal of System Simulation	Aug. 2024

设备运行的维护成本,元; C_{ng} 为单位天然气价格,元/m³; $N_{gt}(t)$ 为t时刻燃气轮机消耗的天然气量,m³; C_{e} 为单位电价,元/kW·h; $E_{ms}(t)$ 为t时刻 系统购入电量,kW·h; C_{mt} 为第i种设备运行的维 护成本,元/kW; $H_{i}(t)$ 为t时刻第i种设备的出力 量,kW。

Fig. 2 Structure and energy flow of multi-energy supply system

1.4.2 设备仿真模型

(1) CCHP系统

CCHP系统发电的同时产生的热量,可被余 热回收装置回收,按照能量品质的不同,实现梯 级利用。

$$E_{\rm gt}(t) = y(t) \times P_{\rm gt} \tag{27}$$

$$N_{\rm gt}(t) = \frac{3.6 \times E_{\rm gt}(t)}{\eta_{\rm gt} \times H_{\rm u}}$$
(28)

$$Q_{\rm gt}(t) = 3.6 \times E_{\rm gt}(t) \times \eta_{\rm gte}$$
⁽²⁹⁾

$$H_{\rm wb}(t) = Q_{\rm gt}(t)\theta_{\rm gt}(t)\eta_{\rm wb}$$
(30)

$$H_{\rm ar}(t) = Q_{\rm gt}(t)(1 - \theta_{\rm gt}(t))COP_{\rm ar}$$
(31)

式中: $E_{gt}(t)$ 为燃气轮机在t时刻的发电量, kW; y(t)为燃气轮机在t时刻的运行负荷状态; P_{gt} 为燃 气轮机的额定功率, kW; η_{gt} 为燃气轮机发电效 率; H_{u} 为天然气热值, MJ/m³; $Q_{gt}(t)$ 为燃气轮机 在t时刻抽出的蒸汽量, MJ; η_{gte} 为燃气轮机的热效率, 与机组负荷运行状态相关, 二者拟合曲线如图3所示; $H_{wb}(t)$ 为t时刻余热锅炉制热量, MJ; $\theta_{gt}(t)$ 为t时刻抽出蒸汽量分配给余热锅炉的比例系数; η_{wb} 为余热锅炉供热效率; $H_{ar}(t)$ 为t时刻吸收式制冷机组制冷量, MJ; COP_{ar} 为吸收式制冷机组的制冷系数。

Fig. 3 Relation curve between load rate and thermal efficiency

(2) 辅助能源系统

辅助能源系统主要包括电锅炉和电制冷机组。

$$H_{\rm er}(t) = E_{\rm er}COP_{\rm er} \tag{32}$$

$$H_{\rm eb}(t) = E_{\rm eb}\eta_{\rm eb} \tag{33}$$

式中: $H_{er}(t)$ 为t时刻电制冷机组制冷量,kW; $E_{er}(t)$ 为t时刻电制冷机组耗电量,kW; COP_{er} 为 电制冷机组的制冷系数; $H_{eb}(t)$ 为t时刻电锅炉制 热量,kW; $E_{eb}(t)$ 为t时刻电锅炉耗电量,kW; η_{eb} 为电锅炉供热效率。

(3) 电化学储能设备

电化学储能设备配合风、光能源使用,当系 统电量充足时,储能元件充电,在系统产能小于 用户需求时,储能元件放电。

$$E_{\rm ces}(t) = E_{\rm ces}(t-1) - \frac{E_{\rm ces,d}(t)}{\eta_{\rm ces,d}} + \eta_{\rm ees,c} E_{\rm ces,c}(t) \quad (34)$$

$$SOC_{\min} \leq E_{ees}(t) \leq SOC_{\max}$$
 (35)

式中: $E_{ees}(t)$ 为t时刻储能设备的储电量, kW; $E_{ees,c}(t)$ 和 $E_{ees,d}(t)$ 分别为t时刻储能设备的充电量和

第36卷第8期		Vol. 36 No. 8
2024年8月	包哲, 等: 基于风、光联合出力仿真的多能联供系统鲁棒机会约束优化研究	Aug. 2024

放电功量, kW; $\eta_{\text{ees,e}}$ 和 $\eta_{\text{ees,d}}$ 分别为储能设备的充电 和放电效率; SOC_{max} 和 SOC_{min} 为储能设备运行时储 电保有量的上限和下限, kW。

1.4.3 约束条件

约束条件包括能源供需平衡约束、风光联合 出力约束、鲁棒约束和供能设备出力约束。目前, 对于 CCHP 系统,主要采用以热定电的供能方式, 因此,本文能源供需平衡约束同样选取以热定电 原则。

电、冷、热供需平衡约束为

$$E_{gt}(t)+E_{ms}(t)-E_{ms}(t)-E_{ms}(t)+E_{sp}-$$

 $E_{ees,c}(t)+E_{ees,d}(t)+E_{wp} \ge E(t)$ (36)

$$H_{\rm ar}(t) + H_{\rm er}(t) = H_{\rm C}(t)$$
 (37)

$$H_{\rm wb}(t) + H_{\rm eb}(t) = H_{\rm Q}(t)$$
 (38)

式中: E(t)为t时刻电需求量, kW; $H_c(t)$ 为t时刻 冷需求量, MJ; $H_o(t)$ 为t时刻热需求量, MJ。

Copula+CCP条件下的风、光联合出力约束为

$$P_{i}[E_{wp}(t) + E_{sp}(t) \le b_{i}(t)] \ge 1 - p_{i}$$
(39)

$$b_i(t)^{p_i} = C^{-1}(p_i(t)), i = 1, 2, \dots, m$$
 (40)
式中: $E_{sp}(t) 为 t$ 时刻光伏电站计划出力量, kW;

 $E_{wp}(t)为t时刻风电站计划出力量,kW; <math>P_i$ 为违约 水平, $0.01 \le P_i \le 0.1$ 。

鲁棒约束为

$$L_{j}(x,\lambda_{j}) = f(x) + \sum_{j=1}^{4} \lambda_{j} h_{j}(x) , j = 1, 2, 3, 4$$
(41)

$$g_j(\lambda) = \inf(x, \lambda_j), \forall j = 1, 2, 3, 4$$
(42)

$$\frac{\partial L_j(x,\lambda_j)}{\partial x} = 0 \tag{43}$$

$$\lambda_j h_j(x) = 0 \tag{44}$$

$$\lambda_i \ge 0 \tag{45}$$

式中: L_j 为拉格朗日函数; λ_j 为拉格朗日算子; $g_i(\lambda)$ 为为拉格朗日算子对偶表达式。

供能设备的出力约束为

$$0 \leq H_i(t) \leq H_{i,\max} \tag{46}$$

$$0 \leq E_{\text{ces, d}}(t) \leq \delta_{\text{d}} E_{\text{ees, max}} \tag{47}$$

$$0 \le E_{\text{res.c.}}(t) \le \delta_c E_{\text{res.max}} \tag{48}$$

式中: H_{i,max}为第*i*种供能设备的额定容量, kW;

 $E_{\text{ees,max}}$ 为储能元件的额定容量, kW; δ_{d} 和 δ_{c} 为储能 元件的放电和充电系数。

1.5 不确定性风险成本计算方法

风、光能源天然的随机性决定着其计划可支配 出力量与实际出力量之间势必会出现一定的偏差, 当计划出力量大于实际出力量时,将会引起弃风、 弃光现象,导致资源浪费和经济损失;反之,当计 划出力量小于实际出力量时,将会出现能源供给缺 口,不仅会影响系统运行的安全性,还会出现惩罚 成本从而影响系统的经济性。因此,为了有效量化 表征风、光不确定性对系统经济性的影响,本文特 引入了不确定性风险成本,具体计算公式如下:

$$f_{w} = f_{wp} + f_{sp}$$
(49)
$$f_{wp} = \begin{cases} c_{wp,1} (E_{wp}(t) - E_{rw}(t)), E_{wp}(t) - E_{rw}(t) > 0 \\ c_{wp,2} (E_{rw}(t) - E_{wp}(t)), E_{wp}(t) - E_{rw}(t) < 0 \end{cases}$$
(50)
$$f_{sp} = \begin{cases} c_{sp,1} (E_{sp}(t) - E_{rsp}(t)), E_{sp}(t) - E_{rsp}(t) > 0 \\ c_{sp,2} (E_{rsp}(t) - E_{sp}(t)), E_{sp}(t) - E_{rsp}(t) < 0 \end{cases}$$
(51)

式中: f_w 为风、光发电总偏差成本,元; f_{wp} 为风 力发电偏差成本,元; f_{sp} 为光伏发电偏差成本, 元; $c_{wp,1}$ 和 $c_{wp,2}$ 分别为风力发电的弃风成本单价 和违约成本单价,元/kW; E_{rw} 为风力发电实际出 力量, kW; $c_{sp,1}$ 和 $c_{sp,2}$ 分别为光伏发电的弃风成 本单价和违约成本单价,元/kW; E_{rsp} 为光伏发电 实际出力量, kW。 $E_{wp}(t) - E_{rw}(t) > 0$ 和 $E_{sp}(t) - E_{rsp}(t) < 0$ 表示t时刻风力发电和光伏发电的计划出 力量大于实际出力量,系统将出现弃风、弃光现 象; $E_{wp}(t) - E_{rw}(t) < 0$, $E_{sp}(t) - E_{rsp}(t) < 0$ 分别表示t时刻风力发电和光伏发电的计划出力量小于实际 出力量,系统将出现风、光违约现象。系统在P违约水平下的不确定性风险成本为

$$C_{\text{risk}} = \frac{1}{1 - \beta} \int f_{\text{w}} \rho_j dE_{\text{N}}$$
(52)

式中: C_{risk} 为不确定性风险成本,元; ρ_j 为不同的 概率密度函数,当j=1时为风、电独立概率密度 函数,当j=2时为光伏发电独立概率密度函数, 当j=3时为风光联合发电概率密度函数; E_N 为风

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024年8月	Journal of System Simulation	Aug. 2024

光计划出力量, kW。为了方便求解,本文通过引 入风险成本临界值α,将公式(52)进行转换:

$$C_{\text{risk}} = \min_{\alpha} \left\{ \alpha + \frac{1}{1 - \beta} E_{w, p_j} ([f_w - \alpha]^+) \right\}$$
(53)

$$[f_{w} - \alpha]^{+} = \max\{f_{w} - \alpha, 0\}$$
(54)

式中: E_{w,p}为概率函数pj的期望值。

2 研究案例

本文基于 MATLAB 2014a 软件搭建仿真平台, 以某工业园区为研究对象,选择过渡季、夏季、冬 季中的典型日进行算例仿真,其中,过渡季典型日 代表热、电负荷比较均衡的情景,夏季典型日代表 热负荷极端高的情景,冬季典型日代表冷负荷极端 高的情景,具体负荷曲线如图4所示。

表1为多能联供系统的部分参数数据。其中,购电价格按照阶梯电价的收费标准,共分为3个等级,即峰时段(11:00—15:00)为1.18元/kW、平时段为(09:00—11:00,16:00—18:00,22:00—23:00)0.84元/kW和谷时段(00:00—08:00)为0.56元/kW。储能设备运行时荷电量的上限SOC_{max}和下限SOC_{min}分别取额定容量的85%和15%,即850kW和150kW。储能设备的充电效率和放电效率为90%,储能设备的运行成本为0.2元/kW。

表1 系统参数

Table 1Part of system parameters						
主要经济性参数	值					
燃气轮机维护成本单价/(元/kWh)	0.03					
吸收式制冷机组维护成本单价/(元/MJ)	0.000 2					
电锅炉维护成本单价/(元/MJ)	0.000 6					
电制冷机组维护成本单价/(元/MJ)	0.000 5					
弃风、弃光成本/(元/kW)	0.2					
风、光出力违约成本/(元/kW)	0.4					
天然气价格/(元/m³)	2.12					
主要工程参数	值					
燃气轮机额定功率/MW	2.5					
光伏额定功率/MW	1					
风电额定功率/MW	2					
储能设备额定功率/MW	1					
储能设备出力系数	0.4					
余热锅炉效率	0.776					
电锅炉效率	0.95					
天然气低位发热量/(MJ/m³)	35.175					
吸收式制冷机组制冷系数	1.2					
电制冷机组制冷系数	3.6					

3 结果分析

为验证本文优化模型的经济性和鲁棒性,设置了3个对比场景,具体分类见表2。

表2 场景分类							
	Table 2 Sc	ene classification					
忆垦	应用	考虑风、光出力	应用鲁棒				
切京	CCP算法	相关性	算法				
Ι	\checkmark	×	×				
II	\checkmark	\checkmark	×				
III	\checkmark	\checkmark	\checkmark				

第36卷第8期 2024年8月

包哲,等:基于风、光联合出力仿真的多能联供系统鲁棒机会约束优化研究

3.1 风、光联合出力结果分析

基于历史数据和核密度估计法,获得风、光 出力核估计分布函数。由图5可知,在3个季节的 典型日中,核分布估计拟合曲线和经验分布函数 拟合曲线几乎重合,因此,核分布估计可以作为 风、光出力的边缘分布函数。

基于上述核密度分布估计,通过拟合生成3 个典型日的风、光出力概率分布函数。 夏季典型日风电和光伏各自的边缘分布函 数为

$$F_{1} = 51\ 604.4p_{1}^{5} - 122\ 900.7p_{1}^{4} + 105\ 446.3p_{1}^{3} - 39\ 218.8p_{1}^{2} + 6\ 698.1p_{1} + 4.2$$
(55)

$$F_{2} = -3\ 390.7p_{2}^{5} + 12\ 058.7p_{2}^{4} - 15\ 027.9p_{2}^{3} + 7\ 521.1p_{2}^{2} - 296.9p_{2} - 19.2$$
(56)

式中: F₁、F₂、p₁和p₂分别为夏季典型日风电出力 量、光伏出力量、风电出力概率水平和光伏出力 概率水平。

图5 3个典型日核密度分布估计和经验分布函数图

Fig. 5 Empirical distribution function and kernel distribution estimation diagram on typical day in three seasons

http://www.china-simulation.com

• 1903 •

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024年8月	Journal of System Simulation	Aug. 2024

过渡季典型日风电和光伏各自的边缘分布函 数为

$$F_{3} = 17\ 759.7p_{3}^{5} - 46\ 026.1p_{3}^{4} + 46\ 783.6p_{3}^{3} - 22\ 189.6p_{3}^{2} + 5\ 612.8p_{3} + 164.2 \tag{57}$$

$$F_4 = -11\ 190.9p_4^5 + 32\ 189.0p_4^4 - 31\ 954.5p_4^3 +$$

11 800.0*p*²₄-18.0*p*₄-57.7 (58) 式中: *F*₃、*F*₄、*p*₃和*p*₄分别为过渡季典型日风电出 力量、光伏出力量、风电出力概率水平和光伏出 力概率水平。

冬季典型日风电和光伏各自的边缘分布函 数为

$$F_{5} = 2\ 380.0p_{5}^{5} - 5\ 512.2p_{5}^{4} + 4\ 604.9p_{5}^{3} - 1\ 637.2p_{5}^{2} + 257.2p_{5} - 2.9 \tag{59}$$

$$F_{6} = -12\ 485.0p_{6}^{5} + 35\ 726.3p_{6}^{4} - 35\ 635.6p_{6}^{3} + 35\ 726.3p_{6}^{4} - 35\ 726.3p_$$

13 647.6*p*₆²-679.4*p*₆-37.8 (60) 式中: *F*₅、*F*₆、*p*₅和*p*₆分别为冬季典型日风电出力 量、光伏出力量、风电出力概率水平和光伏出力 概率水平。

基于风、光出力核估计分布函数,生成风、 光出力的频率频数二元直方图如图6所示。结合 最大似然估计法,求得3个季节典型日中3种阿基 米德联合概率分布表达式中的相关系数,其中, 过渡季典型日 Frank Copula 函数相关系数 λ = 0.476, Clayton Copula 函数相关系数 ξ =0.121, Gumbel Copula 函数相关参数 θ =1.048;夏季典型 日 Frank Copula 函数相关系数 λ =0.34, Clayton Copula 函数相关系数 ξ =0.03, Gumbel Copula 函数 相关参数 θ =1.052;冬季典型日 Frank Copula 函数 相关系数 λ =0.538, Clayton Copula 函数相关系数 ξ = 2.389, Gumbel Copula 函数相关参数 θ =1.29。

根据上述3种阿基米德Copula函数的相关系数计算可得,3个典型日中不同Copula函数的Kendall秩相关系数和Spearman秩相关系数,计算结果如表3所示。过渡季典型日原始数据中Kendall秩相关系数和Spearman秩相关系数分别为0.052和0.076,与其最接近的是Frank Copula函数的0.053和0.079,夏季和冬季也呈现出同样的结果,即Frank Copula函数的Kendall秩相关系数和Spearman秩相关系数与原始数据最为接近。

http://www.china-simulation.com

• 1904 •

Bao et al.: Study on Robust Chance Constrained Optimization of Multi-energy S

图 6 3个典型日风、光边缘函数二元直方图 Fig. 6 Binary histograms of wind power and solar power on typical day in three seasons

表3 3个典型日中不同Copula函数评价指标数据表 Evaluation indicators of three Copula functions in typical day over three

	Table 5 Evaluation indicators of three copila functions in typical day over three seasons									
典型日	数据类别	Kendall	Spearman	典型日	数据类别	Kendall	Spearman	典型日	数据类别	Kendall
	原始数据 0.052 0.076 原始数据 0.038 0.055	原始数据	0.258							
过渡季	Clayton	0.057	0.086	夏季	Clayton	0.015	0.022	冬季	0.372	Clayton
	Frank	0.053	0.079		Frank	0.038	0.057		0.212	0.312
	Gumbel	0.046	0.069		Gumbel	0.050	0.075		Frank	0.252

由上述分析可知,3个典型日中均显示Frank Copula函数评价结果最优,所以本文分别选择相 关系数为0.476、0.34和0.538的Frank Copula函数 描述风、光联合出力分布,函数分布图如7所示, 具体函数表达式为

Table 3

$$C_{\[top]{2}twp} = -2.1 \times \ln\left(1 + \frac{(e^{-0.476u} - 1)(e^{-0.476v} - 1)}{e^{-0.476} - 1}\right)$$
(61)
$$C_{\[top]{2}p} = -2.94 \times \ln\left(1 + \frac{(e^{-0.34u} - 1)(e^{-0.34v} - 1)}{e^{-0.34} - 1}\right)$$
(62)
$$C_{\[top]{2}p} = -1.86 \times \ln\left(1 + \frac{(e^{-0.538u} - 1)(e^{-0.538v} - 1)}{e^{-0.538} - 1}\right)$$
(63)

式中: u和v分别中风、光出力的分布函数。

基于上述所得 Frank Coupla 函数, 3个典型日 中3个场景的风、光预期计划出力量如图 8~10所 示。从3个季节的对比来看,对于风电预期出力量, 过渡季>冬季>夏季;对于光伏电站预期处理量,夏 季>过渡季>冬季,该变化趋势也与实际情况比较吻 合。从3个情景的对比来看,3个典型日呈现出一样 的特征。具体来说,对于风、光预期发电总量,情 景I(违约水平0.1)>情景II(违约水平0.1)>情景III(违 约水平0.01)。这是因为,情景I仅考虑了风、光出 力各自的分布概率,并未考虑风、光出力之间的相 关性,忽略了实际情况中存在的阴天"风大光小"、 晴天"风小光大"等典型场景,因此,模拟风、光 可支配出力量结果相对偏高。与情景I相比,虽然情 景II的违约水平与情景I相同,但情景II中优化模型 将CCP算法和Copula函数相耦合,通过引入风、光 联合出力分布概率,设置了风、光联合出力约束条 件,风、光的预期出力量与实际情况更为相符。例 如,本研究模拟的夏季典型日属于阴天状态下,气 象条件一般是偏北风5级(风速8~10.7 m/s),辐射量 为晴天的20%左右。对比与情景I,在同等风电出力 的条件下,情景Ⅱ中光伏出力更小,属于低出力水 平,因此,情景Ⅱ中模拟的风、光预期出力量与实 际情况更为吻合。与此同时,过渡季和冬季也呈现 出与夏季典型日相同的变化特征。

系统仿真学报

第36卷第8期 2024年8月

图 7 3个典型月 Frank Copula 函数分布图 Fig. 7 Frank Copula function distribution diagram in typical month over three seasons

相比于上述2种情景,情景III中的风、光出力 总量最低,这是因为情景III在情景III的基础上加入 了鲁棒优化算法,而为了进一步增加系统运行的 鲁棒性,模型在求解过程中势必会谨慎地选择稳 定性最高的运行方案,因此,情景III中风、光的 预估可支配出力总量最低,但另一方面,情景III 条件下获得的供能策略稳定性更高,违约水平从 0.1降至0.01,供需失衡风险更低。

Vol. 36 No. 8

图 8 过渡季典型日不同情景下风、光能源预估计划发电量 Fig. 8 Expected power generation of wind and solar power outputs under different scenarios on typical day in transition

http://www.china-simulation.com

图9 夏季典型日不同情景下风、光能源预估计划发电量 Fig. 9 Expected power generation of wind and solar power outputs under different scenarios on typical day in summer

图 10 冬季典型日不同情景下风、光能源预估计划发电量 Fig. 10 Expected power generation of wind and solar power outputs under different scenarios on the typical day in winter

3.2 储能设备运行结果分析

图 11~13 给出了 3 个典型日不同情景下储能设 备的动态充、放电对比结果。由图可知, 3 个典型 日中储能设备的充放电状态基本保持一致的变化特 征。具体来看,对于情景I和情景II,在00:00-08:00 电价处于低谷的时段,储能设备选择进行集中充电, 直至充至荷电状态的上限约束;在11:00-16:00电 价高峰时段,储能设备开始释放存储的电能直至荷 电状态的下限,作为电源满足该时段的负荷需求。 这是因为,虽然冬季典型日和夏季典型日为全年热 负荷和冷负荷的需求峰值,用户侧负荷需求量明显 高于过渡季,但负荷的差异性主要体现在全天的 08:00-22:00, 而在电价低谷阶段(00:00-8:00), 3 个典型日的用户侧负荷需求并未有过大的差异,均 有部分剩余电量,因此储能可进行充电。在17:00-21:00时段3个典型日在供电系统出力均处于饱和状 态,需要通过外购电量来满足需求,但17:00-19:00时段的电价要明显低于19:00-21:00。因此, 系统会选择储能设备在17:00—19:00之间进行充电, 以此应对接下来19:00-21:00的电价高峰阶段。

图 11 过渡季典型日不同情景下储能装置充放电动态过程 Fig. 11 Dynamic process of charging and discharging of energy storage devices under different scenarios on typical day in transition

第36卷第8期 2024年8月

图 12 夏季典型日不同情景下储能装置充放电动态过程 Fig. 12 Dynamic process of charging and discharging of energy storage devices under different scenarios on typical day in summer

从情景对比结果来看,在Copula函数和鲁 棒算法的双重约束下,情景III风、光计划可支 配出力量要低于情景I和情景II,但这只对储能 设备充放电量的大小有一定影响,不会改变储 能设备充放电策略。综上,储能设备的运行状 态主要受电价变化和系统电量存余情况的 影响。

3.3 CCHP系统运行结果分析

图 14~16 给出了3个典型日不同情景下 CCHP 系统供能策略的对比结果。在过渡季典型 日中3个情景均遵循以热定电的供能原则,当 CCHP系统供能量饱和时,选择主网购电、电锅 炉制冷和电制冷机组供冷3个方式,满足冷、 热、电的供需平衡。但在具体数值上,情景III 与其他2种情景存在着较大的差异性。这是由于 情景Ⅲ同时加入了风、光联合出力约束和鲁棒 约束,在制定供能策略时,为了提升系统鲁棒 性的安全性,系统会选择最大程度地降低风、 光能源"供小于求"现象引起的供能安全风险, 因此,情景Ⅲ中风、光预估可支配出力量和储 能设备使用比例均有所下降,导致燃气轮机的 出力量和系统的购电量增加,而且由于没有电 量存余, 使得电锅炉和电制冷的使用率也随之 降低。

Bao et al.: Study on Robust Chance Constrained Optimization of Multi-energy S

Vol. 36 No. 8

Aug. 2024

9 000 7 500 6 000 4 500 3 000 - 电锅炉 -- 风电 〔轮机 购电量 电制冷 ★ 电需求 — 光伏 率/kW 1 500 功 -1500-3000-4 **Š**ÕC -600004:00 08:00 12:00 16:00 20:00 24:00 时刻

相比于过渡季典型日,在冬季和夏季典型日 情景I和情景II中,外购电量明显增加,这是因为 上述2个典型日中热负荷和冷负荷为全年最高,

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024 年 8 月	Journal of System Simulation	Aug. 2024

CCHP系统在饱和供能的条件下,仍在部分时刻 不能完全满足用户侧的冷热需求,因此,需要大 量启用辅助能源系统,即电锅炉和电制冷机组, 通过消耗电量满足用户侧的负荷需求,电锅炉和 电制冷机组出力量的增多,也导致电量消耗较 大,因此,冬季典型日和夏季典型日不仅燃气轮 机出力量增加,而且购电量也明显增多。

3.4 成本分析

本文在运行成本的基础上,进一步引入了风险成本,以此来对比验证3个场景下系统经济性和鲁棒性的表现特征。首先,在已获得过渡季、夏季和冬季典型日3个场景最优运行策略的基础上,随机模拟生成了5000种运行方案,并计算各场景优化结果和5000组随机模拟结果的不确定性风险成本。然后,分别求出3个场景的优化结果与5000组随机模拟结果不确定性风险成本的差值,形成各场景的风险成本集合。最后,通过对比风险成本集合的特征值,分析各场景优化结果的鲁棒性和经济性。

表4为过渡季、夏季和冬季3个场景的成本计 算统计表。从3个场景优化结果不确定性风险成 本横向对比来看,情景III<情景II<情景I。这是因 为,情景III受到鲁棒算法和风、光联合出力的双 重约束,在预估风、光可支配出力量时更为谨慎, 虽然在数值上,情景III中风、光可支配出力量最小,但违约风险同样最低,使得情景III中因风、 光不确定性引起的违约损失最低,不确定性成本 最小。

从优化结果与随机模拟结果的不确定性风 险成本对比可知,情景III条件下系统的鲁棒性 要优于其他2个场景。具体来看,情景I和情景II 条件下,模拟结果的不确定性风险成本均高于 优化结果,风险成本的最大值、平均值和最小 值为正值,由此可知,上述2个情景均没有充分 考虑系统的不确定性运行风险,在制定的最优 运行方案时,过于乐观地预估了风、光出力量, 使得系统中仍明显存在供需失衡隐患。反之, 在情景III条件下,模拟结果的不确定性风险成 本均小于优化结果,系统的风险成本为负值, 表明该情景下最优运行策略的不确定性风险均 低于5000组随机模拟方案,有效提升了系统运 行的鲁棒性。

为进一步分析不同违约水平对系统优化结果的影响,本文在选择0.1和0.01作为违约水平的上限和下限的基础上,新增了2组违约水平约束,分别为0.05<P<0.15和0.2<P<0.5(由于大于P>0.5时,系统的违约概率将超过50%,将严重影响运行的安全稳定性,因此,P>0.5以上的情景将不再进行分析),具体结果如表5所示。

Table 4 Comparison of cost under different scenarios								元			
	过渡季典型日			I.	夏季典型日]		冬季典型日			
经济性植物	情景I	情景Ⅱ	情景III	情景I	情景Ⅱ	情景III	情景I	情景Ⅱ	情景III		
优化运行成本	42 713	43 909	51 949	63 148	64 365	69 377	93 560	95 390	104 760		
优化不确定性风险成本	1 167	1 152	548	613	593	419	1 678	1 073	297		
随机模拟不确定性风险最小成本	1 829	1 804	260	778	750	356	1 992	1 383	116		
随机模拟不确定性风险平均成本	2 160	2 1 3 0	347	942	907	293	2 306	1 692	176		
随机模拟不确定性风险最大成本	2 591	2 554	414	1 106	1 074	230	2 620	2 005	237		
最小风险成本	662	652	-288	164	157	-188	314	309	-182		
平均风险成本	993	978	-201	329	314	-125	628	618	-121		
最大风险成本	1 424	1 402	-134	493	481	-63	942	932	-61		

表4 不同情景成本对比表

第 36 卷第 8 期 2024 年 8 月	包哲,等:	基于风、	光联合出フ	り仿真的多	;能联供系	统鲁棒机	会约束优	化研究		Vol. 36 No. 8 Aug. 2024	
		主 -	て回帰り	ョーイロッキ		→→→→↓↓					
		衣 J Table 5	个回情理	京下小回逛 son of cost	的水干的 under diff	」成本対比 erent scen	arios			元	
违约水平		idole 5	过渡季典型日			夏季典型日			冬季典型日		
	经济性指标	情景I	情景II	情景III	情景I	情景II	情景III	情景I	情景II	「 情景Ⅲ	
0.01~0.1	运行成本	42 713	43 909	51 949	63 148	64 365	69 377	93 560	95 390	104 760	
	不确定性风险成本	1 167	1 152	548	613	593	419	1 678	1 073	297	
0.05~0.15	运行成本	42 145	42 847	50 251	62 298	63 730	66 870	92 162	94 841	101 832	
	不确定性风险成本	1 1 3 2	1 1 5 6	656	631	602	510	1 896	1 332	580	
0.2~0.5	运行成本	37 674	38 268	41 035	55 452	56 262	60 767	89 131	90 124	91 131	
	不确定性风险成本	3 267	3 123	1 341	928	879	689	3 890	3 675	2 364	

由表5可知,对于同一个违约水平约束下的 系统运行成本,由于场景III中风、光能源预估可 支配出力量最少,因此,相比于其他2个场景, 情景III中系统运行消耗的天然气量、外购电量和 总成本均随之增加。与此同时,因为情景III中加 入了鲁棒约束,系统会选择在最低违约水平下制 定最安全的供能方案,所以情景III的风险成本 最低。

对于同一典型日,随着约束水平越低(P取值 越低),系统成本同样随之增加,风险成本会随之 降低。由此可知,增加系统鲁棒性和安全性的同 时,系统的经济性会有所牺牲。因此,决策者在 制定运行方案时需要在供能风险和经济收益间做 出权衡。

4 结论

本文基于Copula理论、CCP算法和鲁棒优化 方法,提出一种计及风、光联合出力分布概率的 多能联供系统鲁棒机会约束优化模型,结合多情 景分析方法,得到如下结论:

(1)相比于传统 CCP 算法,本文提出的 Copula+CCP+鲁棒规划的耦合模型,增加了对风、 光联合出力和系统鲁棒性的双重约束,在同样的 风、光波动范围内,模型的取值更为严格,预估 风、光可支配出力总量时更为谨慎。因此,系统 受风、光不确定性导致的供需失衡风险也进一步 降低,系统鲁棒性更强。

(2)从系统成本来看,较低的风、光出力违约

风险使得违约损失更小,系统的不确定性风险成本更低。但由于该模型更加保守地预估风、光能 源可支配出力量,导致冷热电联供系统出力量增加,一次能源消耗量增多,使得系统的经济性略 有降低。因此,决策者需要根据实际情况进行衡 量,通过调整鲁棒不确定集中的违约水平区间, 实现系统经济性和鲁棒性的协调统一。

(3) 在设置模型的目标函数时, 仅考虑了系统 的运行成本和设备的维护成本, 后续可继续增加 表述系统低碳性、能效性和违约惩罚的目标函数, 以此进一步验证模型的"能效-安全-低碳-经济" 综合效益。

参考文献:

 范雅倩, 于松源, 房方. 热电联产虚拟电厂两阶段分布 鲁棒优化调度[J]. 系统仿真学报, 2023, 35(5): 1046-1058.
 Fan Yaqian, Yu Songyuan, Fang Fang. Two-stage

Distributed Robust Optimal Dispatching for a Combined Heat and Power Virtual Power Plant[J]. Journal of System Simulation, 2023, 35(5): 1046-1058.

[2] 李伟琦, 王维庆, 王海云, 等. 基于安全域理论的含新能源电力系统概率潮流分析方法[J]. 太阳能学报, 2022, 43(8): 1-7.

Li Weiqi, Wang Weiqing, Wang Haiyun, et al. Probabilistic Power Flow Analysis Method for Power System with Renewable Energy Based on Security Region Theory[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 1-7.

[3] 白牧可, 唐巍, 张璐, 等. 基于机会约束规划的DG与配电网架多目标协调规划[J]. 电工技术学报, 2013, 28 (10): 346-354.

Bai Muke, Tang Wei, Zhang Lu, et al. Multi-objective

第36卷第8期	系统仿真学报	Vol. 36 No. 8
2024年8月	Journal of System Simulation	Aug. 2024

Coordinated Planning of Distribution Network Incorporating Distributed Generation Based on Chance Constrained Programming[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 346-354.

[4] 朱刘柱, 尹晨旭, 王宝, 等. 计及风/光/荷不确定性的综合能源站随机规划研究[J]. 电网与清洁能源, 2021, 37
 (5): 96-105.

Zhu Liuzhu, Yin Chenxu, Wang Bao, et al. Stochastic Programming of Integrated Energy Station Considering the Uncertainties of Wind Power, Photovoltaic and Load [J]. Power System and Clean Energy, 2021, 37(5): 96-105.

- [5] 何思敏,李伟,刘立,等. 基于随机规划的风光柴储容量 配比优化方法[J]. 水电与新能源, 2023, 37(2): 74-78.
 He Simin, Li Wei, Liu Li, et al. Optimization Method for Capacity Ratio of Wind-solar-diesel Storage System Based on Stochastic Programming[J]. Hydropower and Nwe Energy, 2023, 37(2): 74-78.
- [6] Ahmed S, Elsholkami M, Elkamel A, et al. Financial Risk Management for New Technology Integration in Energy Planning Under Uncertainty[J]. Applied Energy, 2014, 128: 75-81.
- [7] 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合能源
 系统分布鲁棒优化[J]. 电工技术学报, 2023, 38(13):
 3473-3485.

Wu Mengxue, Fang Fang. Distributionally Robust Optimization of Electricity-heat-hydrogen Integrated Energy System with Wind and Solar Uncertainties[J]. Transactions of China Electrotechnical Society, 2023, 38 (13): 3473-3485.

[8] 叶琳浩, 申展, 许峰, 等. 考虑光伏不确定性和时序相关 性的分布鲁棒光储协同优化配置方法[J]. 南方电网技 术, 2023, 17(4): 132-143.
Ye Linhao, Shen Zhan, Xu Feng, et al. Distributionally Robust Collaborative Optimal Allocation Method of Photovoltaic and Energy Storage Considering Photovoltaic Uncertainty and Temporal Correlation[J]. Southern Power System Technology, 2023, 17(4): 132-143.

- [9] Shi Zhichao, Liang Hao, Dinavahi V. Data-driven Distributionally Robust Chance-constrained Unit Commitment with Uncertain Wind Power[J]. IEEE Access, 2019, 7: 135087-135098.
- [10] 李咸善,杨拯.基于绿证机制与条件风险价值的风光水 网联合优化调度策略[J]. 三峡大学学报(自然科学版), 2023,45(5):121-132.

Li Xianshan, Yang Zheng. Joint Optimal Dispatching of Wind-solar-water-networks Based on Green Certificate and Conditional Risk Value[J]. Journal of China Three Gorges University(Natural Sciences), 2023, 45(5): 121-132.

[11] 齐志远,郭佳伟,李晓炀.基于联合概率分布的风光互补发电系统优化配置[J].太阳能学报,2018,39(1):203-209.

Qi Zhiyuan, Guo Jiawei, Li Xiaoyang. Optimal Configuration for Wind Power and Solar Power Hybrid Systems Based on Joint Probability Distribution of Wind Speed with Solar Irradiance[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 203-209.

[12] 贾玲玲. 计及源荷不确定性的光热-光伏-风电联合发 电系统协调优化调度策略[D]. 兰州: 兰州理工大学, 2022.

Jia Lingling. Coordinated Optimal Dispatching Strategy for CSP-PV-W Combined Power Generation System Considering Source-load Uncertainty[D]. Lanzhou: Lanzhou University of Technology, 2022.

- [13] Zhang Hengxu, Cao Yongji, Zhang Yi, et al. Quantitative Synergy Assessment of Regional Wind-solar Energy Resources Based on MERRA Reanalysis Data[J]. Applied Energy, 2018, 216: 172-182.
- [14] 薛贵挺, 单博雅, 王倜, 等. 考虑光伏不确定性的工业园 区光-储鲁棒优化配置[J]. 系统仿真学报, 2022, 34(11): 2396-2405.

Xue Guiting, Shan Boya, Wang Ti, et al. Robust Optimal Configuration of PV-energy Storage in Industrial Parks Considering the Uncertainty of Photovoltaics[J]. Journal of System Simulation, 2022, 34(11): 2396-2405.

- [15] 张俊涛,程春田,申建建,等.考虑风光不确定性的高比 例可再生能源电网短期联合优化调度方法[J].中国电 机工程学报,2020,40(18):5921-5931,中插20.
 Zhang Juntao, Cheng Chuntian, Shen Jianjian, et al. Short-term Joint Optimal Operation Method for High Proportion Renewable Energy Grid Considering Windsolar Uncertainty[J]. Proceedings of the CSEE, 2020, 40 (18): 5921-5931, S20.
- [16] 宋学伟, 刘玉瑶. 基于改进K-means聚类的风光发电场 景划分[J]. 发电技术, 2020, 41(6): 625-630.
 Song Xuewei, Liu Yuyao. Wind and Photovoltaic Generation Scene Division Based on Improved K-means Clustering[J]. Power Generation Technology, 2020, 41 (6): 625-630.
- [17] 唐雅洁, 阎洁, 李玉浩, 等. 基于深度嵌入聚类的风光水
 典型联合出力场景提取[J]. 浙江电力, 2023, 42(4):
 36-44.

Tang Yajie, Yan Jie, Li Yuhao, et al. Extraction of Typical Combined Output Scenarios of Wind-solar-hydropower Generation Based on Deep Embedding Clustering[J]. Zhejiang Electric Power, 2023, 42(4): 36-44.

第36卷第8期			
2024年8月	包哲.	等: 基于风、	光联合出力仿真的多能联供系统鲁棒机会约束优化研究

[18] 宋宇,李涵.基于核密度估计和Copula函数的风、光出 力场景生成[J]. 电气技术, 2022, 23(1): 56-63. Song Yu, Li Han. Typical Scene Generation of Wind and Photovoltaic Power Output Based on Kernel Density Copula Function[J]. Estimation and Electrical Engineering, 2022, 23(1): 56-63.

[19] 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区 域多微网系统双层多场景协同优化配置[J]. 中国电机 工程学报, 2020, 40(5): 1409-1420. Lin Shunfu, Liu Chitao, Li Dongdong, et al. Bi-level Multiple Scenarios Collaborative Optimization Configuration of CCHP Regional Multi-microgrid

System Considering Power Interaction Among Microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409-1420.

- [20] 卢锦玲, 於慧敏. 基于混合Copula的风光功率相关结构 分析[J]. 太阳能学报, 2017, 38(11): 3188-3194. Lu Jinling, Yu Huimin. Dependence Structure Analysis of Wind and PV Power Based on Hybrid Copula[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3188-3194.
- [21] 胡俊杰, 童宇轩, 刘雪涛, 等. 计及精细化氢能利用的综 合能源系统多时间尺度鲁棒优化策略[J]. 电工技术学 报, 2024, 39(5): 1419-1435.

Hu Junjie, Tong Yuxuan, Liu Xuetao, et al. Multi-time-

scale Robust Optimization Strategy for Integrated Energy System Considering the Refinement of Hydrogen Energy Use[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1419-1435.

- [22] 李欣. 多场景下风光联合发电系统储能容量的优化配 置研究[D]. 西安: 西安理工大学, 2022. Li Xin. Research on Optimal Allocation of Energy Storage Capacity of Wind-solar Combined Power Generation System in Multi-scenarios[D]. Xi'an: Xi'an University of Technology, 2022.
- [23] 段偲默, 苗世洪, 霍雪松, 等. 基于动态Copula的风光联 合出力建模及动态相关性分析[J]. 电力系统保护与控 制, 2019, 47(5): 35-42.

Duan Simo, Miao Shihong, Huo Xuesong, et al. Modeling and Dynamic Correlation Analysis of Wind/ Solar Power Joint Output Based on Dynamic Copula[J]. Power System Protection and Control, 2019, 47(5): 35-42.

[24] Xu Y, Huang G H, Qin X S, et al. SRCCP: A Stochastic Robust Chance-constrained Programming Model for Municipal Solid Waste Management Under Uncertainty [J]. Resources Conservation and Recycling, 2009, 53(6): 352-363.